'Quo Vadis, Action Recognition?' Towards Robust Human Action Modelling For Interview of Research Fellow Position

 $\mathsf{Lei}\ \mathsf{Wang}^{1,2}$

¹Australian National University ²Data61/CSIRO

January 6, 2023

Action Recognition, Challenges, Solutions & A Review

Action Recognition: recognize/identify actions in video Motivations:

Figure 1: Many useful applications.

Challenges:

Action Recognition, Challenges, Solutions & A Review

Table 1:	Some	benchmarks	for 3	3D	action	recognition.
----------	------	------------	-------	----	--------	--------------

Datasets	Year	Classes	Subjects	#Views	#videos	Sensor	Modalities	#joints
UWA3D Activity	2014	30	10	1	701	Kinect v1	RGB + Depth + 3DJoints	15
UWA3D Multiview Activity II	2015	30	9	4	1,070	Kinect v1	RGB + Depth + 3DJoints	15
Charades	2016	157	-	-	66,500	-	RGB	-
NTU RGB+D	2016	60	40	80	56,880	Kinect v2	RGB + Depth + IR + 3DJoints	25
NTU RGB+D 120	2019	120	106	155	114,480	Kinect v2	RGB + Depth + IR + 3DJoints	25
Kinetics-skeleton	2019	400	-	-	260,232	-	2DJoints	18
Kinetics-700	2020	700	-	-	647,907	-	RGB	-

Techniques:

- Conventional RGB videos
 - handcrafted: Dense Trajectories (DT), Improved Dense Trajectories (IDT), etc.
 - deep-learning: two-stream networks, C3D, TSN, Inflated 3D (I3D), etc.
- Depth videos (e.g., HON4D, HOPC, etc.)
- Skeleton sequences (e.g., ST-GCN, etc.)

Figure 3: Camera setup, depth video frame & skeletons.

A comparative review¹ of recent action recognition algorithms

¹Wang, L., Huynh, D. Q., & Koniusz, P. (2020). **A comparative review of recent kinect-based action recognition algorithms**. *IEEE TIP*, 29, 15-28.

Feature Hallucination

Motivation

- ullet Transition: handcrafted feature o CNN models
- Handcrafted features
 - capture domain specific information
 - fused with CNNs for better performance, but costly

Our models

Figure 4: DEEP-HAL

Figure 5: DEEP-HAL+SDF/ODF

- DEEP-HAL²
 - learn to 'translate' the CNN output to IDT
 - even 'translate' the CNN output to I3D optical flow features
- DEEP-HAL+SDF/ODF³
 - use detectors & saliency
 - form higher-order statistical moments (subspaces)
- ²Wang, L., Koniusz, P., & Huynh, D. Q. (2019). Hallucinating idt descriptors and i3d optical flow features for action recognition with cnns. In *ICCV* (pp. 8698-8708).
- ³Wang, L., & Koniusz, P. (2021). **Self-supervising action recognition by statistical moment and subspace descriptors**. In *ACMMM* (pp. 4324-4333).

Tensor Representations & Feature Fusion

Motivation

- interactions of groups of skeletal joints
- physical connectivity, limited receptive fields
- ignore the dependency between body joints non-connected by body parts

Figure 6: SCK

Figure 7: DCK

Our models⁴

SCK+DCK & SCK⊕+DCK⊕

- capture complex interplay
- incorporate multi-modal inputs

Figure 8: 3Mformer.

Multi-order Multi-mode Transformer (3Mformer)

- use skeletal hypergraph
- encode first-, second- & higher-order hyper-edges features

Figure 9: Skeletal graph & hypergraph.

⁴Koniusz, P., Wang, L., & Cherian, A. (2021). **Tensor representations for action recognition**. *IEEE TPAMI*, 44(2), 648-665.

Few-shot Alignment-based

Motivation

- FSL can quickly adapt to novel classes if annotations are limited
- FSL on skeletons for action recognition is underexplored

Our models

uncertainty-DTW (uDTW)⁵:

- We train the Encoding Network.
- The comparator learns the notion of similarity between query-support pairs.
- At the test time, given a set of support sequences with labels, we can decide which one matches the query.

Figure 10: Soft-DTW. (top) vs. uncertainty-DTW (bottom).

 $\mathbf{d}_{\mathrm{uDTW}}(\mathbf{D}, \mathbf{\Sigma}^{\dagger})$

Figure 11: Supervised few-shot action recognition.

1 16410 12. 0113

⁵Wang, L., & Koniusz, P. (2022). **Uncertainty-DTW for Time Series and Sequences**. In *ECCV*, oral.

Few-shot Alignment-based

Joint tEmporal and cAmera viewpoiNt allgnmEnt (JEANIE)6:

- Match query-support features under varying viewpoints of 3D poses
- find a smooth joint viewpoint-temporal alignment
- minimize/maximize d_{JEANIE} for same/different support-query labels
- **JEANIE** has the transportation plan \downarrow , \searrow , \rightarrow for temporal axes & take additional steps on the viewpoint axis, e.g., step inward, inward-down, etc.

Figure 13: JEANIE.

Figure 14: Our 3D skeleton-based FSAR with JEANIE.

'Quo Vadis, Action Recognition?'

Conclusion:

- Video-based:
 - self-supervision/MTL/co-regularize a CNN resembles domain adaptation
 - + easier to obtain video frames/rich visual information/robust backbones
 - - require large-scale dataset/computational cost/deal with redundant pixels
- Skeleton-based:

Wang

- tensor representations & multi-order multi-mode feature fusion
- + openpose & Kinect toolkit+OpenNI/lightweight/faster to process
- - require large-scale dataset/reliability/ lack visual information
- Few-shot:
 - alignment-based/match query-support pair
 - + faster adaptation to novel classes/limited data is fine
 - robust data is required to learn a good model

Remark:

- existing works all report promising results
- new and more robust algorithms are still required
- a pressing demand in real and new environments

