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Introduction: Action Recognition & A Comparative Review

Introduction: Action Recognition & A Comparative Review
Action Recognition: recognize/identify actions in video
Motivations: many useful applications
Challenging problems: viewpoints, partial occlusion & self-occlusion, etc.
Datasets & protocols:

Table 1: Some benchmarks for 3D action recognition.
Datasets Year Classes Subjects #Views #videos Sensor Modalities #joints
UWA3D Activity 2014 30 10 1 701 Kinect v1 RGB + Depth + 3DJoints 15
UWA3D Multiview Activity II 2015 30 9 4 1,070 Kinect v1 RGB + Depth + 3DJoints 15
Charades 2016 157 - - 66,500 - RGB -
NTU RGB+D 2016 60 40 80 56,880 Kinect v2 RGB + Depth + IR + 3DJoints 25
NTU RGB+D 120 2019 120 106 155 114,480 Kinect v2 RGB + Depth + IR + 3DJoints 25
Kinetics-skeleton 2019 400 - - 260,232 - 2DJoints 18
Kinetics-700 2020 700 - - 647,907 - RGB -

cross-subject/single-view & cross-view action recognition
zero-, one- & few-shot action recognition

Techniques:
RGB videos (e.g., IDT, Two-stream network, C3D, TSN, I3D, etc.)
Depth videos (e.g., HON4D, HOPC, etc.)
Skeleton sequences (e.g., ST-GCN etc.)

A comparative review2 of recent action recognition algorithms
2Wang, L., Huynh, D. Q., & Koniusz, P. (2020). A comparative review of recent

kinect-based action recognition algorithms. IEEE TIP, 29, 15-28.
Lei Wang ANU & Data61/CSIRO February 1, 2023 4 / 37
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Video-based Action Recognition Hallucinating IDT Descriptors & I3D Optical Flow Features

Motivation, key ideas & pipeline
Motivation:

Transition: handcrafted feature → CNN models
Handcrafted features:

capture domain specific information
encoded with Bag-of-Words (BoW) / Fisher Vectors (FV)
fused with CNNs for better performance but costly

Figure 1: The overview of our pipeline. Figure 2: Hallucinating OFF.
Our model:

learn to ‘translate’ the CNN output (e.g., I3D) to IDT-based BoW/FV
even ‘translate’ the CNN output to I3D Optical Flow Features (OFF)
Test stage:

BoW, FV & OFF streams hallucinate global descriptors
remove the need of actually computing IDT/OFF
simplify the action recognition pipeline

Lei Wang ANU & Data61/CSIRO February 1, 2023 6 / 37
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Video-based Action Recognition Hallucinating IDT Descriptors & I3D Optical Flow Features

Results and Discussions

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP
HAF+BoW halluc. 73.9 71.6 76.2 70.7 76.3 71.9 63.4 71.9%

HAF+BoW halluc.+SK/PN 73.9 75.8 72.2 73.9 77.0 73.6 68.8 73.6%
HAF* only 74.6 73.2 77.0 75.1 76.1 75.6 71.9 74.8%

HAF*+BoW halluc. 78.8 75.0 84.1 76.0 77.0 78.3 75.2 77.8%
HAF*+BoW hal.+MSK/PN 80.1 79.2 84.8 83.9 80.9 78.5 75.5 80.4%
HAF•+BoW hal.+MSK/PN 80.8 80.9 85.0 83.9 82.0 79.8 79.6 81.7%

ditto+OFF hal. 81.2 81.2 84.9 83.4 84.2 78.9 79.1 81.8%
I3D+BoW MTL• 79.1 78.1 83.6 78.7 79.1 78.6 76.5 79.1%

KRP-FS 70.0% KRP-FS+IDT 76.1% GRP 68.4% GRP+IDT 75.5%

Table 2: Evaluations of (top) our methods
and (bottom) comparisons to the state of the
art on MPII.

Why our pipeline works well?
enforce a CNN to learn IDT /
IDT is unlikely to be captured by
CNNs
co-regularize I3D resembles
domain adaptation
multi-task learning (MTL)
boosts generalization & prevents
overfitting (task specific losses)
self-supervision

With state-of-the-art results, we hope our method (DEEP-HAL3) will spark a
renewed interest in IDT-like descriptors.

3Wang, L., Koniusz, P., & Huynh, D. Q. (2019). Hallucinating idt descriptors and i3d
optical flow features for action recognition with cnns. In ICCV (pp. 8698-8708).
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Video-based Action Recognition Statistical Moment & Subspace Descriptors

Motivation
build on a concept of self-supervision
learn to predict both action concepts and auxiliary descriptors
motivate the use of higher-order statistics

capture 4 statistical moments: mean, covariance, coskewness & cokurtotsis
describe the covariance matrix by its leading n′ eigenvectors (subspace)

(a)

(b)

(c)
Figure 3: We use detectors & saliency in hallucination descriptors.
3a:bounding boxes from Inception V2, Inception ResNet V2, ResNet101 & NASNet.
3b: MNL saliency detector4 focuses on spatial regions (region-wise saliency). 3c:
ACLNet saliency detector5 discovers motion regions (temporal saliency).

4Zhang, J., Zhang, T., Dai, Y., Harandi, M., & Hartley, R. (2018). Deep unsupervised
saliency detection: A multiple noisy labeling perspective. In CVPR (pp. 9029-9038).

5W. Wang, J. Shen, J. Xie, M. -M. Cheng, H. Ling and A. Borji (2021). Revisiting Video
Saliency Prediction in the Deep Learning Era. In IEEE TPAMI (pp. 220-237).
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Video-based Action Recognition Statistical Moment & Subspace Descriptors

ODF, SDF & the pipeline

Object Detection Features (ODF)
one-hot detection, ImageNet scores, embeded confidence scores of detection,
embedded bounding box coordinates & embedded normalized frame index
stack per bounding box per frame features into a matrix
extract the mean, leading eigenvectors of covariance, skewness & kurtosis

Saliency Detection Features (SDF)
kernelized descriptor on spatio-angular gradient distribution of saliency maps
& intensity patterns

An ODF per detector & an SDF per saliency detector

The OFF stream is supervised by X(opt.).
DET1, ...,DET4 & SAL1/SAL2 corresponding to ODF & SDF (dashed blue).

Lei Wang ANU & Data61/CSIRO February 1, 2023 9 / 37
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Video-based Action Recognition Statistical Moment & Subspace Descriptors

Results and Discussions

HAF/BoW/FV DEEP-HAL+ DEEP-HAL+
hal. W+G+ODF (SK512) W+G+SDF (SK512)
43.1 47.22 45.30

DEEP-HAL+W+G+ DEEP-HAL+W+G+ DEEP-HAL+W+G+
ODF+SDF (SK512) ODF+SDF (SK1024) ODF+SDF (exact)

49.06 50.14 50.16

Table 3: Evaluations on Charades (I3D backbone).

AssembleNet++ 50 (Kinetics-400 pre-training)
baseline ODF+SDF (SK512) ODF+SDF (SK1024) ODF+SDF (exact)

53.8 55.81 56.94 57.30

AssembleNet++ 50 (without pre-training)
baseline ODF+SDF (SK512) ODF+SDF (SK1024) ODF+SDF (exact)

56.7 60.71 61.98 62.29

Table 4: Eval. on Charades (AssembleNet++).

Discussions:
a large margin of
performance gain

detection/saliency
features boosts results by
∼6%
ODF and SDF are highly
complementary

a simple approach
lightweight by
comparison
save computational time
‘orthogonal’ to
backbones

For more details, please refer to our paper6.

6Wang, L., & Koniusz, P. (2021). Self-supervising action recognition by statistical moment
and subspace descriptors. In ACMMM (pp. 4324-4333).
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Skeleton-based Action Recognition

Skeleton-based Action Recognition
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Overview
We are interested in matching pairs of temporal sequences (or time series) for
few-shot learning, time series completion and classification.

ReLU ReLU

Figure 4: Example few-shot action recognition pipeline.
We train the Encoding Network.
The comparator learns the notion of similarity between query-support pairs.
At the test time, given a set of support sequences with labels, we can decide
which one matches the query.
The empirical loss ℓ(·) is encouraged to reach 0 if query-support pair has the
same class labels. For pairs with non-matching labels, ℓ(·) is encouraged to
be large.

Lei Wang ANU & Data61/CSIRO February 1, 2023 12 / 37
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Overview

Formally, similarity learning minimizes the empirical loss ℓ(·) and some
regularization term Ω(·, ·) expressing our belief about the model:∑

n

ℓ(d2(Ψn,Ψ
′
n), yn) + βΩn(Ψn,Ψ

′
n).

Query: Ψ ≡ [ψ1, ...,ψτ ] with τ temporal frames (or blocks).
Support: Ψ′ ≡ [ψ′

1, ...,ψ
′
τ ′ ] with τ ′ temporal frames (or blocks).

However, distance d(·, ·) is suboptimal for matching temporal sequences:
Temporal location and speed of actions vary.
Temporal patterns within the same class have high intra-class variance: no
two sequences are identical.
Same actors never perform the same action exactly the same way.
So-called (Soft-)Dynamic Time Warping (DTW) overcomes the above
issues7. We build on it.

7Cuturi, M., & Blondel, M. (2017, July). Soft-dtw: a differentiable loss function for
time-series. In ICML (pp. 894-903). PMLR.
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Motivation
Compare the Euclidean distance vs. (Soft-)Dynamic Time Warping (DTW):

Euclidean distance=
bad temporal matching

Dynamic Time Warping=
good temporal matching

Why?
Because 

DTW

Euclidean

Figure 5: Euclidean dist. (top) vs. DTW (bottom). Corresponding matching paths (right).

The Euclidean distance naively compares features of corresponding frames of
two sequences Ψ and Ψ′. See support-query matching of frames (top plot).
The (Soft-)Dynamic Time Warping (bottom) is able to match better human
poses taking into account temporal variations.
DTW performs that ‘better’ matching (see the green matching path on the
right) by factoring out temporal variations. The black path is suboptimal.

Lei Wang ANU & Data61/CSIRO February 1, 2023 14 / 37



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Motivation
However, sequences Ψ and Ψ′ suffer from the observation noise.
Compare uncertainty-DTW vs. soft-DTW under the noise (indicated in gray):

Uncertainty affects DTW

observation
noise

Our uncertainty-DTW
is designed to cope with uncertainty

uDTW

DTW

Figure 6: Soft-DTW. (top) vs. uncertainty-DTW (bottom).
Blue path (right) takes uncertainty into account; green path does not.
Thus, the blue path provides more robust distance for similarity learning.
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Approach

uDTW
(uncertainty-weighted distance
accumulated along the path)

DTW
(distance accumulated
along the path)

          uncertainty penalty
(regularization accumulated
along the path)

Figure 7: Soft-DTW vs. uncertainty-DTW.

Uncertainty-DTW models the uncertainty for each frame (or temporal block).
Each path is a solution to the Maximum Likelihood Estimation: each node on
the path is described by the Gaussian with variance.
MLE ‘explains’ the distances on the path by the modelled distribution.
Log-likelihood results in duDTW (see derivations in the paper).
Additionally, Ω is penalty for selecting (trivially) large uncertainty.

Lei Wang ANU & Data61/CSIRO February 1, 2023 16 / 37
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Approach

Our uncertainty-DTW can capture ‘alternative’ paths:

(a) sDTWγ=0.01 (b) sDTWγ=0.1 (c) uDTWγ=0.01 (d) uDTWγ=0.1 (e) uncertainty

Figure 8: With higher γ controlling softness, in (b) & (d) more paths become ‘active’. In
(c) & (d), uDTW has two possible routes due to uncertainty modeling.

Soft-DTW (plots (a) & (b)) produces single paths (‘fuzziness is due to
soft-maximum operator selecting the best path).
Uncertainty-DTW (plots (c) & (d)) produces alternative paths merging
where the uncertainty σn,m (plot (e)) is large.
σn,m is obtained from a small MLP called SigmaNet (we have observed it is
better to optimize over SigmaNet parameters than directly over σn,m.
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Pipeline: Supervised Few-shot Action Recognition

ReLU ReLU

Scaled SigmoidScaled Sigmoid

Figure 9: Supervised few-shot action recognition with the uncertainty-DTW (uDTW).

Our model contains:
Encoding Network (backbone); each sequence is split into temporal blocks.
Comparator has access to each temporal block features ψ1, ...,ψτ and
ψ′

1, ...,ψ
′
τ ′ of query-support pairs.

SigmaNet produces the uncertainty variable Σ

The objective function is a trade-off between the empirical loss ℓ(·) with
uncertainty-DTW and the uncertainty penalty (regularization) Ω(·).

Lei Wang ANU & Data61/CSIRO February 1, 2023 18 / 37
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Pipeline: Unsupervised Few-shot Action Recognition

Scaled SigmoidScaled Sigmoid

Figure 10: Unsupervised few-shot action recognition with the uncertainty-DTW (uDTW).

We train Encoding Network (backbone) but in an unsupervised manner.
Comparator learns a dictionary (DL) which contains ‘abstract’ dictionary
sequences (clusters).
LcSA is an encoder of sequences into the dictionary space.
Interaction between LcSA encoder and dictionary can be thought as soft
clustering that uses the uncertainty-DTW distance.
At the test time, the nearest neighbor on encoded sequences is used to match
support sequence (known labels) with the query (unknown label).
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Pipeline: Forecasting the Evolution of Time Series

Tanh

Scaled SigmoidScaled Sigmoid

Figure 11: Predicting Evolution of Time Series.

Variable x is the first half of time series, and x′ is the second half of time
series.
MLP learns to predict x′ with MLP+uncertainty-DTW from x.

Lei Wang ANU & Data61/CSIRO February 1, 2023 20 / 37
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Results: Forecasting the Evolution of Time Series
Given the first part of a time series, we

train 3 multi-layer perception (MLP) to predict the remaining part
use the Euclidean, sDTW or uDTW distance per MLP
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(b) ECG5000

Figure 12: We use ECG200 and ECG5000 in UCR archive, and display the prediction
obtained for the given test sample and the ground truth (GT). Oftentimes, we observe
that uDTW helps predict the sudden changes well.
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Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

Results: Few-shot Action Recognition
For more details, results and discussions, please refer to our paper 8.

Table 5: Evaluations on NTU-60.
#classes 10 20 30 40 50

Supervised
MatchNets 46.1 48.6 53.3 56.3 58.8
ProtoNet 47.2 51.1 54.3 58.9 63.0
TAP 54.2 57.3 61.7 64.7 68.3
Euclidean 38.5 42.2 45.1 48.3 50.9
sDTW 53.7 56.2 60.0 63.9 67.8
sDTW div. 54.0 57.3 62.1 65.7 69.0
uDTW 56.9 61.2 64.8 68.3 72.4

Unsupervised
Euclidean 20.9 23.7 26.3 30.0 33.1
sDTW 35.6 45.2 53.3 56.7 61.7
sDTW div. 36.0 46.1 54.0 57.2 62.0
uDTW 37.0 48.3 55.3 58.0 63.3

Table 6: Evaluations on NTU-120.
#classes 20 40 60 80 100

Supervised
MatchNets 20.5 23.4 25.1 28.7 30.0
ProtoNet 21.7 24.0 25.9 29.2 32.1
TAP 31.2 37.7 40.9 44.5 47.3
Euclidean 18.7 21.3 24.9 27.5 30.0
sDTW 30.3 37.2 39.7 44.0 46.8
sDTW div. 30.8 38.1 40.0 44.7 47.3
uDTW 32.2 39.0 41.2 45.3 49.0

Unsupervised
Euclidean 13.5 16.3 20.0 24.9 26.2
sDTW 20.1 25.3 32.0 36.9 40.9
sDTW div. 20.8 26.0 33.2 37.5 42.3
uDTW 22.7 28.3 35.9 39.4 44.0

sDTW div.: Blondel et al., Differentiable divergences between time series. AISTATS 2021.
TAP: Bing Su & Ji-Rong Wen, Temporal Alignment Prediction for Supervised Representation
Learning and Few-Shot Sequence Classification, ICLR 2022.

8Wang, L., & Koniusz, P. (2022). Uncertainty-DTW for Time Series and Sequences. In
ECCV, oral.
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

Motivation
query

support

query

support

Matching query-support features under varying
viewpoints of 3D poses:

(top) rotate a support trajectory onto a query
trajectory (naive).
(bottom) advanced viewpoint alignment strategy is
needed: locally follow complicated non-linear paths
but assume viewpoints change smoothly in time,
e.g., no large abrupt changes along the path.

To learn similarity/dissimilarity between pairs of query-support sequences:
find a smooth joint viewpoint-temporal alignment.
minimize/maximize dJEANIE for same/different support-query labels.

A viewpoint invariant distance can be defined as:
dinv(Ψ,Ψ′)= Inf

γ,γ′∈T
d
(
γ(Ψ), γ′(Ψ′)

)
, (1)

T is a set of transformations required to achieve a viewpoint invariance.
T may include 3D rotations to rotate one trajectory onto the other (or each
3D pose onto the corresponding 3D pose).
Such global viewpoint alignment of two sequences or local alignment of 3D
poses are suboptimal. T may realise better transformation strategies...

Thus, we propose a FSAR approach that learns on skeleton-based 3D body joints
by Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE).
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

JEANIE
Sequences that are being matched might have been captured under different
camera viewpoints or subjects might have followed different trajectories.
Thus, to model 3D pose variations, we:

exploit the projective camera geometry.
propose the smooth path in DTW should simultaneously perform temporal & viewpoint
alignment

JEANIE has the transportation plan A′where apart of steps ↓, ↘, → for
temporal axes (indicated as τ and τ ′), JEANIE can also take additional steps on
the viewpoint axis, e.g., step inward, inward-down, etc..
Thus, apart from temporal block counts τ (query) & τ ′ (support), for query
sequences we simulate K=2ηaz+1, K ′=2ηalt+1 camera viewpoints (or Euler
angles). We have:

possible ηaz left and ηaz right steps from the initial camera azimuth,
and ηalt up and ηalt down steps from the initial camera altitude.
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

JEANIE (cont.)
JEANIE is given as:

dJEANIE(Ψ,Ψ′)=SoftMinγ
A∈A′

⟨A,D(Ψ,Ψ′)⟩ , (2)

where D∈RK×K′×τ×τ ′

+ ≡ [dbase(ψm,k,k′ ,ψ′
n)] (m,n)∈Iτ×Iτ′

(k,k′)∈IK×IK′

.

Suppose we tackle the
camera viewpoint alignment
in just camera azimuth.
The maximum viewpoint
change from block to block
is ι-max shift (smoothness).

We initialize all possible origins of shifts in accumulator rn,1,1.
A phase related to soft-DTW (temporal-viewpoint alignment) takes place.
We choose the path with the smallest distance (of matched features) over all
possible viewpoint ends by selecting a soft-minimum over [rn,τ,τ ′ ]n∈{−η,...,η}.
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

View-wise Soft-DTW vs. FVM vs. JEANIE

Viewpoints

-45o

-30o

0o

30o

45o Temporal

4.94
4.64
4.15
4.08
4.21

(a) soft-DTW (view-wise)

Viewpoints

-45o

-30o

0o

30o

45o Temporal

dFVM = 2.53

(b) FVM

Viewpoints

-45o

-30o

0o

30o

45o Temporal

4.38
4.45
4.07
3.69
3.99

(c) JEANIE(1-max shift)
Figure 13: The support & query sequence are shown in green & black respectively.

soft-DTW finds each individual alignment per viewpoint fixed throughout
alignment: dshortest=4.08. Too pessimistic!
FVM is a greedy matching algorithm which leads to unrealistic zigzag
path: dFVM=2.53. Overoptimistic!
JEANIE (1-max shift) is able to find smooth joint viewpoint-temporal
alignment between support and query sequences: dJEANIE=3.69.

Free Viewpoint Matching (FVM) seeks the best local viewpoint alignment for every step of
DTW, thus resulting in a non-smooth path along viewpoint axis in contrast to JEANIE.
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

Pipeline: further details

ReLU

ReLU

=

Figure 14: Our 3D skeleton-based FSAR with JEANIE.

Generate multiple rotations by (∆θx,∆θy) of each query by
Euler angles (baseline approach) or
simulated camera views (gray cameras) by camera shifts (∆θaz,∆θalt).

Temporal-viewpoint alignment takes place in 4D space (we show a 3D case).
Temporally-wise, JEANIE starts from the same t=(1, 1) & finishes at
t=(τ, τ ′).
Viewpoint-wise, JEANIE starts from every possible camera shift &
finishes at one of possible camera shifts.
At each step, the step may be no larger than (±∆θaz,±∆θalt) to prevent
erroneous alignments.
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

Results & Discussions

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 4.60

(a) walking vs. walking (FVM)
-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 2.68

(b) walking vs. running (FVM)

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dJEANIE = 8.57

(c) walking vs. walking (JEANIE)
-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dJEANIE = 11.21

(d) walking vs. running (JEANIE)
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Skeleton-based Action Recognition Temporal-Viewpoint Transportation Plan (FSAR)

Results & Discussions (cont.)
Table 7: Results on NTU-120 (multiview
classification).
Training view bott. bott. bott.& cent. left left left & cent.
Testing view cent. top top cent. right right
100/same 100 (baseline) 74.2 73.8 75.0 58.3 57.2 68.9
100/same 100 (FVM) 79.9 78.2 80.0 65.9 63.9 75.0
100/same 100 (JEANIE) 81.5 79.2 83.9 67.7 66.9 79.2
100/novel 20 (baseline) 58.2 58.2 61.3 51.3 47.2 53.7
100/novel 20 (FVM) 66.0 65.3 68.2 58.8 53.9 60.1
100/novel 20 (JEANIE) 67.8 65.8 70.8 59.5 55.0 62.7

Table 8: Experiments on 2D and 3D
Kinetics-skeleton.

S2GC soft-DTW FVM JEANIE JEANIE
(no soft-DTW) +Transf.

2D skel. 32.8 34.7 - - -
3D skel. 35.9 39.6 44.1 50.3 52.5

Discussion.
Few-shot multi-view classification.

Adding more camera viewpoints helps.
Even with (novel 20) (not used in training), we still achieve 62.7% & 70.8%.

JEANIE on the Kinetics-skeleton dataset.
We use Euler angles.
3D outperforms 2D by 3–4%.
With Transformer, JEANIE further boosts results by 2%.

For more details, see our paper9.
9Wang, L., & Koniusz, P. (2022). Temporal-Viewpoint Transportation Plan for Skeletal

Few-shot Action Recognition. In ACCV, oral, Best Student Paper Award.
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Skeleton-based Action Recognition Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

Motivation
GCN-based

represent human body joints based on physical connectivity
limited receptive fields / one- or few-hop neighbourhood aggregation
ignore the dependency between body joints non-connected by body parts

Human actions are associated with interaction groups of skeletal joints
the impact of groups of joints on each action differs

Inspired by our tensor representations10:
sequence compatibility kernel (SCK) & dynamics compatibility kernel (DCK)
compactly capture complex interplay
operate on subsequences / capture the local-global interplay of correlations
incorporate multi-modal inputs

Figure 16: SCK Figure 17: DCK
10Koniusz, P., Wang, L., & Cherian, A. (2021). Tensor representations for action recognition.

IEEE TPAMI, 44(2), 648-665.
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Skeleton-based Action Recognition Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

Motivation (cont.)
We propose to:

use skeletal hypergraph
Hypergraph captures higher-order
relationships by hyper-edges
Hyper-edges connect more than two
nodes (body joints) Figure 18: Skeletal graph & hypergraph.

Compared to GCN:
encodes first-/second-/ higher-order
hyper-edges
set of body joints (nodes)/ edges between
pairs of nodes/hyper-edges between triplets
of nodes Figure 19: MLP+HoT branches

Concatenating HoT outputs of orders 1 to r across τ 11 blocks is sub-optimal.
#hyper-edges of J joints grows rapidly with order r, i.e.,

(
J
i

)
for i = 1, ..., r

embeddings of the highest order hyper-edges dominate lower orders
long-range temporal dependencies of features are insufficiently explored

11For brevity, we write that we have τ temporal blocks per sequence. In fact, τ varies.
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Skeleton-based Action Recognition Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

Multi-order Multi-mode Transformer (3Mformer)
Given M ∈ RI1×I2×...×Ir , we perform mode-m matricization to obtain
M ≡ M⊤

(m) ∈ R(I1...Im−1Im+1...Ir)×Im to form joint-token.
joint-mode tokens:

‘channel-temporal block’ (Attention matrix AMP∈Rd′τ×d′τ )
‘channel-body joint’ (ATP∈Rrd′J×rd′J)
‘channel-hyper-edge (any order)’ (ATP∈Rd′N×d′N & N =

∑r
m=1

(
J
m

)
)

and ‘channel-only’ (AMP∈Rd′×d′) pairs
Joint-mode Self-Attention (JmSA):

show diagonal / vertical patterns
patterns are consistent with the pattens of attention matrices found in
standard Transformer, e.g., NLP
joint-mode attention captures richer information

Figure 20: Visualization of attention matrices: ‘channel-only’, ‘channel-hyper-edge’,
‘order-channel-body joint’ & ‘channel-temporal block’ tokens.
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Skeleton-based Action Recognition Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

Visualization of 3Mformer
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Figure 21: 3Mformer is a two-branch model:
(a) MP→TP & (b) TP→MP.

Two basic building modules:
Multi-order Pooling (MP)

combine information flow
block-wise
various joint-mode tokens
help improve results
different focus of each
attention mechanism

Temporal block Pooling (TP)
each sequence may contains
a different number of blocks
aggregates via popular
pooling, e.g., rank-, first-,
second- or higher-order
pooling

We also form our multi-head JmSA
as in standard Transformer.
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Skeleton-based Action Recognition Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

Pipeline: further details

ReLU ReLU

block 1

Sequence
of blocks

block 

Encoding Network Multi-order Multi-mode Transformer (3Mformer)

MP

TP

TP

MP

classify

JmSA JmSA

Figure 22: Pipeline overview.
each sequence is split into τ temporal blocks B1, ...,Bτ

each block is embedded by a simple MLP into X1, ...,Xτ

X1, ...,Xτ are passed to HoTs (n=1, ..., r) for feature tensors Φ1, ...,Φτ

subsequently concatenated by ⊙ along the hyper-edge mode into tensor M
3Mformer contains two complementary branches: MP→TP & TP→MP
outputs are concatenated by ⊙ and passed to the classifier
MP & TP perform attention with the so-called joint-mode tokens
MP contains weighted pooling along hyper-edge mode by learnable
matrix H (and H′ in another branch).
TP contains block-temporal pooling denoted by g(·) to capture
block-temporal order with pooling
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Skeleton-based Action Recognition Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

Results & Discussions

NTU-60 NTU-120 Kinetics-Skeleton
20

40

60

80
hyper-edge-only
body joint-only
temporal block-only
channel-only
channel-hyper-edge
order-channel-body joint
channel-temporal block

Figure 23: Single-mode tokens vs. joint-mode tokens.
Table 9: NTU-60, NTU-120 & Kinetics-Skeleton.

Method Venue NTU-60 NTU-120 Kinetics-Skeleton
X-Sub X-View X-Sub X-Set Top-1 Top-5

Graph-
based

TCN CVPRW’17 - - - - 20.3 40.0
ST-GCN AAAI’18 81.5 88.3 70.7 73.2 30.7 52.8
AS-GCN CVPR’19 86.8 94.2 78.3 79.8 34.8 56.5
2S-AGCN CVPR’19 88.5 95.1 82.5 84.2 36.1 58.7
NAS-GCN AAAI’20 89.4 95.7 - - 37.1 60.1
Sym-GNN TPAMI’22 90.1 96.4 - - 37.2 58.1
Shift-GCN CVPR’20 90.7 96.5 85.9 87.6 - -
MS-G3D CVPR’20 91.5 96.2 86.9 88.4 38.0 60.9

Hypergraph-
based

Hyper-GNN TIP’21 89.5 95.7 - - 37.1 60.0
DHGCN CoRR’21 90.7 96.0 86.0 87.9 37.7 60.6
Selective-HCN ICMR’22 90.8 96.6 - - 38.0 61.1
SD-HGCN ICONIP’21 90.9 96.7 87.0 88.2 37.4 60.5

Transformer-
based

ST-TR CVIU’21 90.3 96.3 85.1 87.1 38.0 60.5
MTT LSP’21 90.8 96.7 86.1 87.6 37.9 61.3
4s-GSTN Symmetry’22 91.3 96.6 86.4 88.7 - -
STST ACM MM’21 91.9 96.8 - - 38.3 61.2
3Mformer (with avg-pool, ours) 92.0 97.3 88.0 90.1 43.1 65.2
3Mformer (with max-pool, ours) 92.1 97.8 - - - -
3Mformer (with attn-pool, ours) 94.2 98.5 89.7 92.4 45.7 67.6
3Mformer (with tri-pool, ours) 94.0 98.5 91.2 92.7 47.7 71.9
3Mformer (with rank-pool, ours) 94.8 98.7 92.0 93.8 48.3 72.3

Discussions:
Single-mode tokens vs.
joint-mode tokens
graph-based vs.ours:

AS-GCN/2S-AGCN
pairwise relationship
second-order

ours
higher-order
groups of body joints

2nd-order HoT alone vs.
NAS-GCN/Sym-GNN

hypergraph-based vs.ours:
3rd-order HoT alone vs.
Hyper-GNN/SD-
HGCN/Selective-HCN
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Conclusion & Future Work

Conclusion & Future Work
Conclusion:

Video-based:
self-supervision/hallucination-based
+ easier to obtain video frames/rich visual information/robust backbones
– require large-scale dataset/computational cost

Skeleton-based:
tensor representations & 3Mformer
+ openpose & Kinect toolkit+OpenNI/lightweight/faster to process
– require large-scale dataset/reliability/ lack visual information

Few-shot:
alignment-based/match query-support pair
+ faster adaptation to novel classes/limited data is fine
– robust data is required to learn a good model

Future work:
extending current models to anomaly detection
balancing short-term temporal and long-term patterns
smarter ways of getting reliable motion description (similar to 3D body
joints but more flexible) from RGB-D video

Thank you!
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