#### Robust Human Action Modelling Research Milestone Report: Oral Presentation

Lei Wang

Australian National University Data61/CSIRO

February 2, 2023





|  | · • • | 10  | na  |  |
|--|-------|-----|-----|--|
|  |       | v a | 115 |  |

ANU & Data61/CSIRC

1/37

# Table of Contents<sup>1</sup>

Introduction: Action Recognition & A Comparative Review

- 2 Video-based Action Recognition
  - Hallucinating IDT Descriptors & I3D Optical Flow Features
  - Statistical Moment & Subspace Descriptors
  - 3 Skeleton-based Action Recognition
    - Uncertainty-DTW (FSAR)
    - Temporal-Viewpoint Transportation Plan (FSAR)
    - Tensor Representations & 3Mformer: Multi-order Multi-mode Transformer

#### Conclusion & Future Work

<sup>1</sup>The presented works were published in TIP'19 (IF:11.041), ICCV'19(A\*), TPAMI'20 (IF:24.314), ACMMM'21 (A\*), ECCV'22 (A\*, oral), ACCV'22 (B, oral, **Best Student Paper** Award). I am grateful to my supervisor **Dr. Piotr Koniusz** (Data61/CSIRO&ANU):

#### Introduction: Action Recognition & A Comparative Review

メロト メタト メヨト メヨト

# Introduction: Action Recognition & A Comparative Review

- Action Recognition: recognize/identify actions in video
- Motivations: many useful applications
- Challenging problems: viewpoints, partial occlusion & self-occlusion, etc.

#### • Datasets & protocols:

Table 1: Some benchmarks for 3D action recognition.

| Datasets                    | Year | Classes | Subjects | #Views | #videos | Sensor    | Modalities                  | #joints |
|-----------------------------|------|---------|----------|--------|---------|-----------|-----------------------------|---------|
| UWA3D Activity              | 2014 | 30      | 10       | 1      | 701     | Kinect v1 | RGB + Depth + 3DJoints      | 15      |
| UWA3D Multiview Activity II | 2015 | 30      | 9        | 4      | 1,070   | Kinect v1 | RGB + Depth + 3DJoints      | 15      |
| Charades                    | 2016 | 157     | -        | -      | 66,500  | -         | RGB                         | -       |
| NTU RGB+D                   | 2016 | 60      | 40       | 80     | 56,880  | Kinect v2 | RGB + Depth + IR + 3DJoints | 25      |
| NTU RGB+D 120               | 2019 | 120     | 106      | 155    | 114,480 | Kinect v2 | RGB + Depth + IR + 3DJoints | 25      |
| Kinetics-skeleton           | 2019 | 400     | -        | -      | 260,232 | -         | 2DJoints                    | 18      |
| Kinetics-700                | 2020 | 700     | -        | -      | 647,907 | -         | RGB                         | -       |

- cross-subject/single-view & cross-view action recognition
- zero-, one- & few-shot action recognition

#### • Techniques:

- RGB videos (e.g., IDT, Two-stream network, C3D, TSN, I3D, etc.)
- Depth videos (*e.g.*, HON4D, HOPC, *etc.*)
- Skeleton sequences (e.g., ST-GCN etc.)
- A comparative review<sup>2</sup> of recent action recognition algorithms

#### Video-based Action Recognition

æ

メロト メタト メヨト メヨト

# Motivation, key ideas & pipeline

#### Motivation:

- $\bullet~\mbox{Transition:}~\mbox{handcrafted feature} \rightarrow \mbox{CNN}~\mbox{models}$
- Handcrafted features:
  - capture domain specific information
  - encoded with Bag-of-Words (BoW) / Fisher Vectors (FV)
  - fused with CNNs for better performance but costly



Figure 1: The overview of our pipeline.

Figure 2: Hallucinating OFF.

#### Our model:

- learn to 'translate' the CNN output (e.g., I3D) to IDT-based BoW/FV
- even 'translate' the CNN output to I3D Optical Flow Features (OFF)
- Test stage:
  - BoW, FV & OFF streams hallucinate global descriptors
    - $\bullet\,$  remove the need of actually computing IDT/OFF
    - simplify the action recognition pipeline

ANU & Data61/CSIRO

イロト イポト イヨト イヨト

# Results and Discussions

|                       | sp1  | sp2  | sp3  | sp4   | sp5  | spб  | sp7  | mAP   |
|-----------------------|------|------|------|-------|------|------|------|-------|
| HAF+BoW halluc.       | 73.9 | 71.6 | 76.2 | 70.7  | 76.3 | 71.9 | 63.4 | 71.9% |
| HAF+BoW halluc.+SK/PN | 73.9 | 75.8 | 72.2 | 73.9  | 77.0 | 73.6 | 68.8 | 73.6% |
| HAF* only             | 74.6 | 73.2 | 77.0 | 75.1  | 76.1 | 75.6 | 71.9 | 74.8% |
| HAF*+BoW halluc.      | 78.8 | 75.0 | 84.1 | 76.0  | 77.0 | 78.3 | 75.2 | 77.8% |
| HAF*+BoW hal.+MSK/PN  | 80.1 | 79.2 | 84.8 | 83.9  | 80.9 | 78.5 | 75.5 | 80.4% |
| HAF+BoW hal.+MSK/PN   | 80.8 | 80.9 | 85.0 | 83.9  | 82.0 | 79.8 | 79.6 | 81.7% |
| ditto+OFF hal.        | 81.2 | 81.2 | 84.9 | 83.4  | 84.2 | 78.9 | 79.1 | 81.8% |
| I3D+BoW MTL*          | 79.1 | 78.1 | 83.6 | 78.7  | 79.1 | 78.6 | 76.5 | 79.1% |
| KRP-FS 70.0% KRP-FS   | +IDT | 76.1 | % G  | RP 68 | 3.4% | GRP- | +IDT | 75.5% |

Table 2: Evaluations of (*top*) our methods and (*bottom*) comparisons to the state of the art on MPII.

#### Why our pipeline works well?

- enforce a CNN to learn IDT / IDT is unlikely to be captured by CNNs
- co-regularize I3D resembles domain adaptation
- multi-task learning (MTL) boosts generalization & prevents overfitting (task specific losses)
- self-supervision

With state-of-the-art results, we hope our method (DEEP-HAL<sup>3</sup>) will spark a renewed interest in IDT-like descriptors.

<sup>&</sup>lt;sup>3</sup>Wang, L., Koniusz, P., & Huynh, D. Q. (2019). Hallucinating idt descriptors and i3d optical flow features for action recognition with cnns. In *ICCV* (pp. 8698-8708).

### **Motivation**

- build on a concept of self-supervision
- learn to predict both action concepts and auxiliary descriptors
- motivate the use of higher-order statistics
  - capture 4 statistical moments: mean, covariance, coskewness & cokurtotsis
  - describe the covariance matrix by its leading n' eigenvectors (subspace)



Figure 3: We use detectors & saliency in hallucination descriptors. 3a:bounding boxes from Inception V2, Inception ResNet V2, *ResNet101* & NASNet. 3b: MNL saliency detector<sup>4</sup> focuses on spatial regions (region-wise saliency). 3c: ACLNet saliency detector<sup>5</sup> discovers motion regions (temporal saliency).

<sup>4</sup>Zhang, J., Zhang, T., Dai, Y., Harandi, M., & Hartley, R. (2018). Deep unsupervised saliency detection: A multiple noisy labeling perspective. In *CVPR* (pp. 9029-9038).
 <sup>5</sup>W. Wang, J. Shen, J. Xie, M. -M. Cheng, H. Ling and A. Borji (2021). Revisiting Video Saliency Prediction in the Deep Learning Era. In *IEEE TPAMI* (pp. 220-237).

# ODF, SDF & the pipeline

- Object Detection Features (ODF)
  - one-hot detection, ImageNet scores, embedded confidence scores of detection, embedded bounding box coordinates & embedded normalized frame index
  - stack per bounding box per frame features into a matrix
  - extract the mean, leading eigenvectors of covariance, skewness & kurtosis
- Saliency Detection Features (SDF)
  - kernelized descriptor on spatio-angular gradient distribution of saliency maps & intensity patterns

#### • An ODF per detector & an SDF per saliency detector



- The OFF stream is supervised by  $\mathcal{X}_{(opt.)}$ .
- DET1,...,DET4 & SAL1/SAL2 corresponding to ODF & SDF (dashed blue).

Image: A mathematical states and a mathem

# Results and Discussions

| HAF/BoW/FV      | DEEP-HAL+        | DEEP-HAL+       |
|-----------------|------------------|-----------------|
| hal. W+         | +G+ODF (SK512) W | /+G+SDF (SK512) |
| 43.1            | 47.22            | 45.30           |
| DEEP-HAL+W+G+   | DEEP-HAL+W+G+    | DEEP-HAL+W+G+   |
| ODF+SDF (SK512) | ODF+SDF (SK1024) | ODF+SDF (exact) |
| 49.06           | <b>50.14</b>     | 50.16           |

Table 3: Evaluations on Charades (I3D backbone).

| baseline<br>53.8 | AssembleNet++<br>ODF+SDF (SK512)<br>55.81 | 50 (Kinetics-400 pre<br>) ODF+SDF (SK1024)<br><b>56.94</b> | -training)<br>) ODF+SDF (exact)<br><b>57.30</b> |
|------------------|-------------------------------------------|------------------------------------------------------------|-------------------------------------------------|
| baseline<br>56.7 | AssembleNet+<br>ODF+SDF (SK512)<br>60.71  | + 50 (without pre-tr<br>) ODF+SDF (SK1024)<br>61.98        | raining)<br>) ODF+SDF (exact)<br><b>62.29</b>   |

Table 4: Eval. on Charades (AssembleNet++).

For more details, please refer to our paper<sup>6</sup>.

#### Discussions:

- a large margin of performance gain
  - detection/saliency features boosts results by  $\sim\!6\%$
  - ODF and SDF are highly complementary
- a simple approach
  - lightweight by comparison
  - save computational time
  - 'orthogonal' to backbones

ANU & Data61/CSIRC

#### Skeleton-based Action Recognition

æ

メロト メタト メヨト メヨト

#### Overview

We are interested in matching pairs of temporal sequences (or time series) for few-shot learning, time series completion and classification.



Figure 4: Example few-shot action recognition pipeline.

- We train the Encoding Network.
- The comparator learns the notion of similarity between query-support pairs.
- At the test time, given a set of support sequences with labels, we can decide which one matches the query.
- The empirical loss ℓ(·) is encouraged to reach 0 if query-support pair has the same class labels. For pairs with non-matching labels, ℓ(·) is encouraged to be large.

#### Overview

Formally, similarity learning minimizes the empirical loss  $\ell(\cdot)$  and some regularization term  $\Omega(\cdot, \cdot)$  expressing our belief about the model:

$$\sum_{n} \ell(d^{2}(\Psi_{n}, \Psi'_{n}), y_{n}) + \beta \Omega_{n}(\Psi_{n}, \Psi'_{n}).$$
  
Query:  $\Psi \equiv [\psi_{1}, ..., \psi_{\tau}]$  with  $\tau$  temporal frames (or blocks).  
Support:  $\Psi' \equiv [\psi'_{1}, ..., \psi'_{\tau'}]$  with  $\tau'$  temporal frames (or blocks).

However, distance  $d(\cdot, \cdot)$  is suboptimal for matching temporal sequences:

- Temporal location and speed of actions vary.
- Temporal patterns within the same class have high intra-class variance: no two sequences are identical.
- Same actors never perform the same action exactly the same way.
- So-called (Soft-)Dynamic Time Warping (DTW) overcomes the above issues<sup>7</sup>. We build on it.

<sup>&</sup>lt;sup>7</sup>Cuturi, M., & Blondel, M. (2017, July). **Soft-dtw:** a differentiable loss function for time-series. In *ICML* (pp. 894-903). PMLR.

### Motivation

Compare the Euclidean distance vs. (Soft-)Dynamic Time Warping (DTW):



Figure 5: Euclidean dist. (top) vs. DTW (bottom). Corresponding matching paths (right).

- The Euclidean distance naively compares features of corresponding frames of two sequences  $\Psi$  and  $\Psi'$ . See support-query matching of frames (top plot).
- The (Soft-)Dynamic Time Warping (bottom) is able to match better human poses taking into account temporal variations.
- DTW performs that 'better' matching (see the green matching path on the right) by factoring out temporal variations. The black path is suboptimal.

### Motivation

However, sequences  $\Psi$  and  $\Psi'$  suffer from the observation noise. Compare uncertainty-DTW vs. soft-DTW under the noise (indicated in gray):



Figure 6: Soft-DTW. (top) vs. uncertainty-DTW (bottom).

• Blue path (right) takes uncertainty into account; green path does not.

Thus, the blue path provides more robust distance for similarity learning.

Lei Wang

# Approach



Figure 7: Soft-DTW vs. uncertainty-DTW.

- Uncertainty-DTW models the uncertainty for each frame (or temporal block).
- Each path is a solution to the Maximum Likelihood Estimation: each node on the path is described by the Gaussian with variance.
- MLE 'explains' the distances on the path by the modelled distribution.
- Log-likelihood results in  $d_{uDTW}$  (see derivations in the paper).
- Additionally,  $\Omega$  is penalty for selecting (trivially) large uncertainty.

Lei Wang

ANU & Data61/CSIRO

February 1, 2023

16 / 37

# Approach

#### Our **uncertainty-DTW** can capture 'alternative' paths:

(a) sDTW<sub> $\gamma=0.01$ </sub> (b) sDTW<sub> $\gamma=0.1$ </sub> (c) uDTW<sub> $\gamma=0.01$ </sub> (d) uDTW<sub> $\gamma=0.1$ </sub> (e) uncertainty

Figure 8: With higher  $\gamma$  controlling softness, in (b) & (d) more paths become 'active'. In (c) & (d), uDTW has two possible routes due to uncertainty modeling.

- Soft-DTW (plots (a) & (b)) produces single paths ('fuzziness is due to soft-maximum operator selecting the best path).
- Uncertainty-DTW (plots (c) & (d)) produces alternative paths merging where the uncertainty  $\sigma_{n,m}$  (plot (e)) is large.
- $\sigma_{n,m}$  is obtained from a small MLP called SigmaNet (we have observed it is better to optimize over SigmaNet parameters than directly over  $\sigma_{n.m.}$

# Pipeline: Supervised Few-shot Action Recognition



Figure 9: Supervised few-shot action recognition with the uncertainty-DTW (uDTW).

Our model contains:

- Encoding Network (backbone); each sequence is split into temporal blocks.
- Comparator has access to each temporal block features  $\psi_1,...,\psi_{\tau}$  and  $\psi_1',...,\psi_{\tau'}'$  of query-support pairs.
- ullet SigmaNet produces the uncertainty variable  $\Sigma$
- The objective function is a trade-off between the empirical loss  $\ell(\cdot)$  with uncertainty-DTW and the uncertainty penalty (regularization)  $\Omega(\cdot)$ .

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

### Pipeline: Unsupervised Few-shot Action Recognition



Figure 10: Unsupervised few-shot action recognition with the uncertainty-DTW (uDTW).

- We train Encoding Network (backbone) but in an unsupervised manner.
- Comparator learns a dictionary (DL) which contains 'abstract' dictionary sequences (clusters).
- LcSA is an encoder of sequences into the dictionary space.
- Interaction between LcSA encoder and dictionary can be thought as soft clustering that uses the uncertainty-DTW distance.
- At the test time, the nearest neighbor on encoded sequences is used to match support sequence (known labels) with the query (unknown label).

# Pipeline: Forecasting the Evolution of Time Series



- Variable  ${\bf x}$  is the first half of time series, and  ${\bf x}'$  is the second half of time series.
- MLP learns to predict  $\mathbf{x}'$  with MLP+uncertainty-DTW from  $\mathbf{x}$ .

20 / 37

Skeleton-based Action Recognition Uncertainty-DTW (FSAR)

## Results: Forecasting the Evolution of Time Series

- Given the first part of a time series, we
  - train 3 multi-layer perception (MLP) to predict the remaining part
  - use the Euclidean, sDTW or uDTW distance per MLP



Figure 12: We use ECG200 and ECG5000 in UCR archive, and display the prediction obtained for the given test sample and the ground truth (GT). Oftentimes, we observe that uDTW helps predict the sudden changes well.

# Results: Few-shot Action Recognition

For more details, results and discussions, please refer to our paper <sup>8</sup>.

Table 5: Evaluations on NTU-60.

Table 6: Evaluations on NTU-120.

| #classes  | 10   | 20   | 30      | 40   | 50   | #classes   | 20   | 40   | 60      | 80   | 100  |
|-----------|------|------|---------|------|------|------------|------|------|---------|------|------|
|           |      | Sı   | upervis | ed   |      | Supervised |      |      |         |      |      |
| MatchNets | 46.1 | 48.6 | 53.3    | 56.3 | 58.8 | MatchNets  | 20.5 | 23.4 | 25.1    | 28.7 | 30.0 |
| ProtoNet  | 47.2 | 51.1 | 54.3    | 58.9 | 63.0 | ProtoNet   | 21.7 | 24.0 | 25.9    | 29.2 | 32.1 |
| TAP       | 54.2 | 57.3 | 61.7    | 64.7 | 68.3 | TAP        | 31.2 | 37.7 | 40.9    | 44.5 | 47.3 |
| Euclidean | 38.5 | 42.2 | 45.1    | 48.3 | 50.9 | Euclidean  | 18.7 | 21.3 | 24.9    | 27.5 | 30.0 |
| sDTW      | 53.7 | 56.2 | 60.0    | 63.9 | 67.8 | sDTW       | 30.3 | 37.2 | 39.7    | 44.0 | 46.8 |
| sDTW div. | 54.0 | 57.3 | 62.1    | 65.7 | 69.0 | sDTW div.  | 30.8 | 38.1 | 40.0    | 44.7 | 47.3 |
| uDTW      | 56.9 | 61.2 | 64.8    | 68.3 | 72.4 | uDTW       | 32.2 | 39.0 | 41.2    | 45.3 | 49.0 |
|           |      | Un   | supervi | ised |      |            |      | Un   | supervi | ised |      |
| Euclidean | 20.9 | 23.7 | 26.3    | 30.0 | 33.1 | Euclidean  | 13.5 | 16.3 | 20.0    | 24.9 | 26.2 |
| sDTW      | 35.6 | 45.2 | 53.3    | 56.7 | 61.7 | sDTW       | 20.1 | 25.3 | 32.0    | 36.9 | 40.9 |
| sDTW div. | 36.0 | 46.1 | 54.0    | 57.2 | 62.0 | sDTW div.  | 20.8 | 26.0 | 33.2    | 37.5 | 42.3 |
| uDTW      | 37.0 | 48.3 | 55.3    | 58.0 | 63.3 | uDTW       | 22.7 | 28.3 | 35.9    | 39.4 | 44.0 |

sDTW div.: Blondel *et al.*, Differentiable divergences between time series. *AISTATS 2021*. TAP: Bing Su & Ji-Rong Wen, Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification, *ICLR 2022*.

<sup>8</sup>Wang, L., & Koniusz, P. (2022). Uncertainty-DTW for Time Series and Sequences. In ECCV, oral.

Lei Wang

22/37

## Motivation



Matching query-support features under varying viewpoints of 3D poses:

- (*top*) rotate a support trajectory onto a query trajectory (naive).
- (*bottom*) advanced viewpoint alignment strategy is needed: locally follow complicated non-linear paths but assume viewpoints change smoothly in time, *e.g.*, no large abrupt changes along the path.

To learn similarity/dissimilarity between pairs of query-support sequences:

- find a smooth joint viewpoint-temporal alignment.
- minimize/maximize d<sub>JEANIE</sub> for same/different support-query labels.

A viewpoint invariant distance can be defined as:

$$d_{\mathsf{inv}}(\boldsymbol{\Psi}, \boldsymbol{\Psi}') = \inf_{\gamma, \gamma' \in T} d\big(\gamma(\boldsymbol{\Psi}), \gamma'(\boldsymbol{\Psi}')\big), \tag{1}$$

- $\bullet~T$  is a set of transformations required to achieve a viewpoint invariance.
- *T* may include 3D rotations to rotate one trajectory onto the other (or each 3D pose onto the corresponding 3D pose).
- Such global viewpoint alignment of two sequences or local alignment of 3D poses are **suboptimal**. *T* may realise better transformation strategies...

Thus, we propose a FSAR approach that learns on skeleton-based 3D body joints by Joint tEmporal and cAmera viewpoiNt allgnmEnt (JEANLE).

### JEANIE

Sequences that are being matched might have been captured under different camera viewpoints or subjects might have followed different trajectories. Thus, to model 3D pose variations, we:

- exploit the projective camera geometry.
- propose the smooth path in DTW should simultaneously perform temporal & viewpoint alignment

**JEANIE** has the transportation plan  $\mathcal{A}'$  where apart of steps  $\downarrow$ ,  $\searrow$ ,  $\rightarrow$  for temporal axes (indicated as  $\tau$  and  $\tau'$ ), JEANIE can also take **additional steps on the viewpoint axis**, *e.g.*, **step inward**, **inward-down**, *etc.*. Thus, apart from temporal block counts  $\tau$  (query) &  $\tau'$  (support), for query sequences we simulate  $K = 2\eta_{az} + 1$ ,  $K' = 2\eta_{alt} + 1$  camera viewpoints (or Euler angles). We have:

- possible  $\eta_{az}$  left and  $\eta_{az}$  right steps from the initial camera azimuth,
- and  $\eta_{alt}$  up and  $\eta_{alt}$  down steps from the initial camera altitude.





< 口 > < 同 > < 三 > < 三 > 、

# JEANIE (cont.)



**JEANIE** is given as:  $d_{\mathsf{JEANIE}}(\Psi, \Psi') = \underset{\mathbf{A} \in \mathcal{A}'}{\operatorname{SoftMin}_{\gamma}} \langle \mathbf{A}, \mathcal{D}(\Psi, \Psi') \rangle, \qquad (2)$ where  $\mathcal{D} \in \mathbb{R}^{K \times K' \times \tau \times \tau'}_{+} \equiv [d_{\mathsf{base}}(\psi_{m,k,k'}, \psi'_n)]_{\substack{(m,n) \in \mathcal{I}_{\tau} \times \mathcal{I}_{\tau'}}}_{(k,k') \in \mathcal{I}_K \times \mathcal{I}_{K'}}$ 

 $\begin{array}{l} \textbf{Algorithm 1 Joint tEmporal and cAmera viewpoiNt allgnmEnt (JEANIE).} \\ \textbf{Input (forward pass): } \boldsymbol{\Psi}, \boldsymbol{\Psi}', \gamma > 0, d_{base}(\cdot, \cdot), \iota\text{-max shift.} \\ 1: r_{\iota,\iota,:} = \infty, r_{n,1,1} = d_{base}(\boldsymbol{\psi}_{n,1}, \boldsymbol{\psi}_{1}'), \forall n \in \{-\eta, ..., \eta\} \\ 2: II \equiv \{-\iota, ..., 0, ..., \iota\} \times \{(0, 1), (1, 0), (1, 1)\} \\ 3: for t \in \mathcal{I}_{\tau'}: \\ 4: for t' \in \mathcal{I}_{\tau'}: \\ 5: if t \neq 1 \text{ or } t' \neq 1: \\ 6: for n \in \{-\eta, ..., \eta\}: \\ 7: r_{n,t,t'} = d_{base}(\boldsymbol{\psi}_{n,t}, \boldsymbol{\psi}_{t'}') + \text{SoftMin}_{\gamma}\left([r_{n-4,t-j,t'-k}]_{(i,j,k)\in II}\right) \\ \textbf{Output: SoftMin}_{\gamma}\left([r_{n,\tau,\tau'}]_{n \in \{-\eta, ..., \eta\}}\right) \\ \end{array}$ 

- Suppose we tackle the camera viewpoint alignment in just camera azimuth.
- The maximum viewpoint change from block to block is *ι*-max shift (smoothness).
- We initialize all possible origins of shifts in accumulator  $r_{n,1,1}$ .
- A phase related to soft-DTW (temporal-viewpoint alignment) takes place.
- We choose the path with the smallest distance (of matched features) over all possible viewpoint ends by selecting a soft-minimum over [r<sub>n,τ,τ'</sub>]<sub>n∈{-η,...,η}</sub>.

・ロト ・回 ト ・ ヨト ・

## View-wise Soft-DTW vs. FVM vs. JEANIE



(a) soft-DTW (view-wise)

(b) FVM

(c) JEANIE(1-max shift)

Figure 13: The support & query sequence are shown in green & black respectively.

- soft-DTW finds each individual alignment **per viewpoint fixed** throughout alignment:  $d_{\text{shortest}} = 4.08$ . Too pessimistic!
- FVM is a greedy matching algorithm which leads to unrealistic zigzag path:  $d_{\text{FVM}} = 2.53$ . Overoptimistic!
- JEANIE (1-max shift) is able to find **smooth joint viewpoint-temporal alignment** between support and query sequences:  $d_{\text{JEANIE}} = 3.69$ .

Free Viewpoint Matching (FVM) seeks the best local viewpoint alignment for every step of DTW, thus resulting in a non-smooth path along viewpoint axis in contrast to JEANIE.

Lei Wang

# Pipeline: further details



Figure 14: Our 3D skeleton-based FSAR with JEANIE.

- $\bullet\,$  Generate multiple rotations by  $(\Delta\theta_x,\Delta\theta_y)$  of each query by
  - Euler angles (baseline approach) or
  - simulated camera views (gray cameras) by camera shifts  $(\Delta \theta_{az}, \Delta \theta_{alt})$ .
- Temporal-viewpoint alignment takes place in 4D space (we show a 3D case).
- Temporally-wise, JEANIE starts from the same t = (1, 1) & finishes at  $t = (\tau, \tau')$ .
- Viewpoint-wise, JEANIE starts from every possible camera shift & finishes at one of possible camera shifts.
- At each step, the step may be no larger than  $(\pm \Delta \theta_{az}, \pm \Delta \theta_{alt})$  to prevent erroneous alignments.

### **Results & Discussions**



# Results & Discussions (cont.)

# Table 7: Results on NTU-120 (multiview classification).

| Training view                  | bott.       | bott.       | bott.& cent. | left        | left        | left & cent. |
|--------------------------------|-------------|-------------|--------------|-------------|-------------|--------------|
| Testing view                   |             | top         | top          | cent.       | right       | right        |
| 100/same 100 (baseline)        | 74.2        | 73.8        | 75.0         | 58.3        | 57.2        | 68.9         |
| 100/same 100 ( <i>FVM</i> )    | 79.9        | 78.2        | 80.0         | 65.9        | 63.9        | 75.0         |
| 100/same 100 ( <i>JEANIE</i> ) | <b>81.5</b> | <b>79.2</b> | 83.9         | <b>67.7</b> | <b>66.9</b> | <b>79.2</b>  |
| 100/novel 20 (baseline)        | 58.2        | 58.2        | 61.3         | 51.3        | 47.2        | 53.7         |
| 100/novel 20 ( <i>FVM</i> )    | 66.0        | 65.3        | 68.2         | 58.8        | 53.9        | 60.1         |
| 100/novel 20 ( <i>JEANIE</i> ) | <b>67.8</b> | <b>65.8</b> | 70.8         | <b>59.5</b> | <b>55.0</b> | <b>62.7</b>  |

# Table 8: Experiments on 2D and 3DKinetics-skeleton.

|                      | S <sup>2</sup> GC<br>(no soft-DTW) | soft-DTW     | FVM       | JEANIE | JEANIE<br>+Transf. |
|----------------------|------------------------------------|--------------|-----------|--------|--------------------|
| 2D skel.<br>3D skel. | 32.8<br>35.9                       | 34.7<br>39.6 | -<br>44.1 | 50.3   | 52.5               |

#### Discussion.

- Few-shot multi-view classification.
  - Adding more camera viewpoints helps.
  - Even with (novel 20) (not used in training), we still achieve 62.7% & 70.8%.
- JEANIE on the Kinetics-skeleton dataset.
  - We use Euler angles.
  - 3D outperforms 2D by 3-4%.
  - With Transformer, JEANIE further boosts results by 2%.
- For more details, see our paper<sup>9</sup>.

<sup>9</sup>Wang, L., & Koniusz, P. (2022). Temporal-Viewpoint Transportation Plan for Skeletal Few-shot Action Recognition. In *ACCV*, oral, Best Student Paper Award.

### Motivation

- GCN-based
  - represent human body joints based on physical connectivity
  - limited receptive fields / one- or few-hop neighbourhood aggregation
  - ignore the dependency between body joints non-connected by body parts
- Human actions are associated with interaction groups of skeletal joints
  - the impact of groups of joints on each action differs
- Inspired by our tensor representations<sup>10</sup>:
  - sequence compatibility kernel (SCK) & dynamics compatibility kernel (DCK)
  - compactly capture complex interplay
  - operate on subsequences / capture the local-global interplay of correlations
  - incorporate multi-modal inputs





30 / 37

<sup>10</sup>Koniusz, P., Wang, L., & Cherian, A. (2021). Tensor representations for action recognition. *IEEE TPAMI*, 44(2), 648-665.

# Motivation (cont.)

#### We propose to:

- use skeletal hypergraph
- Hypergraph captures higher-order relationships by hyper-edges
- Hyper-edges connect more than two nodes (body joints)

Compared to GCN:

- encodes first-/second-/ higher-order hyper-edges
- set of body joints (nodes)/ edges between pairs of nodes/hyper-edges between triplets of nodes

Concatenating HoT outputs of orders 1 to r across  $\tau^{11}$  blocks is *sub-optimal*.

- #hyper-edges of J joints grows rapidly with order r, *i.e.*,  $\binom{J}{i}$  for i = 1, ..., r
- embeddings of the highest order hyper-edges dominate lower orders
- long-range temporal dependencies of features are insufficiently explored

 $^{11}$ For brevity, we write that we have au temporal blocks per sequence. In fact, au varies. =



Figure 18: Skeletal graph & hypergraph.



Figure 19: MLP+HoT branches

# Multi-order Multi-mode Transformer (3Mformer)

Given  $\mathcal{M} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_r}$ , we perform mode-m matricization to obtain  $\mathbf{M} \equiv \mathcal{M}_{(m)}^{\top} \in \mathbb{R}^{(I_1 \ldots I_{m-1} I_{m+1} \ldots I_r) \times I_m}$  to form joint-token.

#### • joint-mode tokens:

- 'channel-temporal block' (Attention matrix  $\mathbf{A}_{\mathsf{MP}} \!\in\! \! \mathbb{R}^{d' \tau \!\times\! d' \tau}$ )
- 'channel-body joint'  $(\mathbf{A}_{\mathsf{TP}} \in \mathbb{R}^{rd'J \times rd'J})$
- 'channel-hyper-edge (any order)' ( $\mathbf{A}_{\mathsf{TP}} \in \mathbb{R}^{d'N \times d'N}$  &  $N = \sum_{m=1}^{r} {J \choose m}$ )
- and 'channel-only' (  $\mathbf{A}_{\mathsf{MP}}\!\in\!\mathbb{R}^{d'\! imes\!d'}$  ) pairs

#### • Joint-mode Self-Attention (JmSA):

- show diagonal / vertical patterns
- patterns are consistent with the pattens of attention matrices found in standard Transformer, *e.g.*, NLP

#### joint-mode attention captures richer information



Figure 20: Visualization of attention matrices: 'channel-only', 'channel-hyper-edge', 'order-channel-body joint' & 'channel-temporal block' tokens.

| l ei ' | W/an | <b>α</b> |
|--------|------|----------|
|        |      | 8        |

<ロ> <四> <四> <四> <三</p>

# Visualization of 3Mformer



Figure 21: 3Mformer is a two-branch model: (a) MP $\rightarrow$ TP & (b) TP $\rightarrow$ MP. Two basic building modules:

- Multi-order Pooling (MP)
  - combine information flow **block-wise**
  - various joint-mode tokens help improve results
  - different focus of each attention mechanism
- Temporal block Pooling (TP)
  - each sequence may contains a different number of blocks
  - aggregates via popular pooling, *e.g.*, rank-, first-, second- or higher-order pooling

We also form our **multi-head** JmSA as in standard Transformer.

< □ > < □ > < □ > < □ > < □ >

33 / 37

# Pipeline: further details



Figure 22: Pipeline overview.

- each sequence is split into au temporal blocks  $\mathbf{B}_1,...,\mathbf{B}_{ au}$
- each block is embedded by a simple MLP into  $\mathbf{X}_1,...,\mathbf{X}_{ au}$
- $\mathbf{X}_1,...,\mathbf{X}_{ au}$  are passed to HoTs  $(n\!=\!1,...,r)$  for feature tensors  $\mathbf{\Phi}_1,...,\mathbf{\Phi}_{ au}$
- ullet subsequently concatenated by  $\odot$  along the hyper-edge mode into tensor old M
- 3Mformer contains two complementary branches: MP→TP & TP→MP
- $\bullet$  outputs are concatenated by  $\odot$  and passed to the classifier
- MP & TP perform attention with the so-called joint-mode tokens
- MP contains weighted pooling along hyper-edge mode by learnable matrix H (and H' in another branch).
- TP contains **block-temporal pooling** denoted by  $g(\cdot)$  to capture block-temporal order with pooling

Lei Wang

ANU & Data61/CSIRC

# Results & Discussions



Figure 23: Single-mode tokens vs. joint-mode tokens. Table 9: NTU-60, NTU-120 & Kinetics-Skeleton.

|              | Mashad                          | Manua       | NT       | U-60   | NTU   | -120     | Kinetics | -Skeleton |
|--------------|---------------------------------|-------------|----------|--------|-------|----------|----------|-----------|
|              | Method                          | venue       | X-Sub    | X-View | X-Sub | X-Set    | Top-1    | Top-5     |
|              | TCN                             | CVPRW'17    | -        | -      |       | -        | 20.3     | 40.0      |
|              | ST-GCN                          | AAAI'18     | 81.5     | 88.3   | 70.7  | 73.2     | 30.7     | 52.8      |
| <i>c</i> .   | AS-GCN                          | CVPR'19     | 86.8     | 94.2   | 78.3  | 79.8     | 34.8     | 56.5      |
| Grapn-       | 2S-AGCN                         | CVPR'19     | 88.5     | 95.1   | 82.5  | 84.2     | 36.1     | 58.7      |
| based        | NAS-GCN                         | AAAI'20     | 89.4     | 95.7   | -     | -        | 37.1     | 60.1      |
|              | Sym-GNN                         | TPAMI'22    | 90.1     | 96.4   | -     | -        | 37.2     | 58.1      |
|              | Shift-GCN                       | CVPR'20     | 90.7     | 96.5   | 85.9  | 87.6     | -        | -         |
|              | MS-G3D                          | CVPR'20     | 91.5     | 96.2   | 86.9  | 88.4     | 38.0     | 60.9      |
|              | Hyper-GNN                       | TIP'21      | 89.5     | 95.7   | -     | -        | 37.1     | 60.0      |
| Hypergraph-  | DHGCN                           | CoRR'21     | 90.7     | 96.0   | 86.0  | 87.9     | 37.7     | 60.6      |
| based        | Selective-HCN                   | ICMR'22     | 90.8     | 96.6   | -     | -        | 38.0     | 61.1      |
|              | SD-HGCN                         | ICONIP'21   | 90.9     | 96.7   | 87.0  | 88.2     | 37.4     | 60.5      |
| -            | ST-TR                           | CVIU'21     | 90.3     | 96.3   | 85.1  | 87.1     | 38.0     | 60.5      |
|              | MTT                             | LSP'21      | 90.8     | 96.7   | 86.1  | 87.6     | 37.9     | 61.3      |
|              | 4s-GSTN                         | Symmetry'22 | 91.3     | 96.6   | 86.4  | 88.7     | -        | -         |
| T            | STST                            | ACM MM'21   | 91.9     | 96.8   | -     | -        | 38.3     | 61.2      |
| Transformer- | 3Mformer (with avg-pool, ours)  |             | 7 32.0 1 | 97.3   | 0.68  | - 30.1 - | - 43.1   | 65.2      |
| based        | 3Mformer (with max-pool, ours)  |             | 92.1     | 97.8   | -     | -        | -        | -         |
|              | 3Mformer (with attn-pool, ours) |             | 94.2     | 98.5   | 89.7  | 92.4     | 45.7     | 67.6      |
|              | 3Mformer (with tri-pool, ours)  |             | 94.0     | 98.5   | 91.2  | 92.7     | 47.7     | 71.9      |
|              | 3Mformer (with rank-pool, ours) |             | 94.8     | 98.7   | 92.0  | 93.8     | 48.3     | 72.3      |

#### **Discussions:**

- Single-mode tokens *vs.* joint-mode tokens
- graph-based vs.ours:
  - AS-GCN/2S-AGCN
    - pairwise relationship
    - second-order
  - ours

- higher-order
- groups of body joints
- 2nd-order HoT alone vs. NAS-GCN/Sym-GNN
- hypergraph-based vs.ours:
  - 3rd-order HoT alone vs. Hyper-GNN/SD-HGCN/Selective-HCN

#### Conclusion & Future Work

Ξ.

・ロト ・回ト ・ヨト ・ヨト

# Conclusion & Future Work

#### Conclusion:

- Video-based:
  - self-supervision/hallucination-based
  - + easier to obtain video frames/rich visual information/robust backbones
  - require large-scale dataset/computational cost
- Skeleton-based:
  - tensor representations & 3Mformer
  - + openpose & Kinect toolkit+OpenNI/lightweight/faster to process
  - require large-scale dataset/reliability/ lack visual information
- Few-shot:
  - alignment-based/match query-support pair
  - $\bullet$  + faster adaptation to novel classes/limited data is fine
  - - robust data is required to learn a good model

#### Future work:

- extending current models to anomaly detection
- balancing short-term temporal and long-term patterns
- smarter ways of getting **reliable motion description** (similar to 3D body joints but more flexible) from RGB-D video