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Video Understanding by Design: How Datasets
Shape Architectures and Insights

Lei Wang, Piotr Koniusz, Yongsheng Gao

Abstract—Video understanding has advanced rapidly, fueled
by increasingly complex datasets and powerful architectures. Yet
existing surveys largely classify models by task or family, over-
looking the structural pressures1 through which datasets guide
architectural evolution. This survey is the first to adopt a dataset-
driven perspective, showing how motion complexity, temporal
span, hierarchical composition, and multimodal richness impose
inductive biases that models should encode. We reinterpret mile-
stones, from two-stream and 3D CNNs to sequential, transformer,
and multimodal foundation models, as concrete responses to
these dataset-driven pressures. Building on this synthesis, we
offer practical guidance for aligning model design with dataset
invariances while balancing scalability and task demands. By
unifying datasets, inductive biases, and architectures into a
coherent framework, this survey provides both a comprehensive
retrospective and a prescriptive roadmap for advancing general-
purpose video understanding.

Index Terms—Video understanding, datasets, architectures,
transformers, multimodal learning, procedural reasoning, tem-
poral modeling, spatiotemporal representation, inductive bias.

I. Introduction

THE last two decades have witnessed video understanding
evolve from a niche research frontier into a cornerstone

of computer vision, powering applications in surveillance,
autonomous driving, robotics, healthcare, education, and large-
scale multimedia retrieval [1]–[13]. Unlike images, videos
encode rich spatiotemporal dynamics, hierarchical procedures,
multimodal signals, and human-object interactions, making
their analysis one of the most challenging yet rewarding
frontiers in artificial intelligence [14], [15]. The complexity
of video understanding has driven a co-evolution of datasets,
learning paradigms, and model architectures: each new dataset
has presented fresh challenges [16]–[22], each paradigm has
offered new strategies to learn from them [3], [14], [23]–[26],
and each architectural design has embodied inductive biases
suited to emerging tasks [7], [9], [27]–[32]. Figure 1 illus-
trates how key dataset attributes, including motion complexity,
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Fig. 1: Datasets as structural lenses. Key attributes, motion
complexity, temporal span, hierarchical structure, and multi-
modal richness, impose distinct challenges that shape model
design. From early motion-focused datasets fostering 3D
CNNs to multimodal corpora driving transformers and vision-
language models, datasets have actively guided the evolution
of video understanding from isolated action recognition to
general, context-rich reasoning.

temporal span, hierarchical structure, and multimodal richness,
have actively guided the evolution of video understanding from
isolated action recognition to context-rich reasoning.

Early progress in the field was driven by compact, manually
curated datasets [33], [34] and handcrafted descriptors such as
HOG3D [35] and improved dense trajectories [36]. However,
the rise of large-scale datasets like Kinetics [16], Something-
Something [17], ActivityNet [18], Charades [19], AVA [21],
and EPIC-Kitchens [37] reshaped the landscape by introducing
diverse tasks: from short-term action classification to fine-
grained, long-horizon, procedural, relational, and multimodal
reasoning. This dataset expansion catalyzed the transition from
shallow two-stream CNNs [38] to 3D CNNs [2], temporal
reasoning networks [25], transformers [27], [28], graph-based
models [7], [23], [26], and multimodal vision-language frame-
works [32], [39]–[43]. Parallel to dataset growth, learning
paradigms have diversified beyond fully supervised training.
Self-supervised learning reduced dependency on labels by us-
ing temporal consistency or masked modeling [29], [31], [44].
Few-shot and zero-shot learning enabled transfer to unseen
categories [7], [45]–[51]. Reinforcement learning introduced
action forecasting and policy-based video interaction [52],
[53]. Most recently, VLMs and LLMs have opened the door
to semantic grounding, cross-modal reasoning, and interactive
video understanding, allowing systems not only to classify or
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detect but also to answer questions, anticipate future events,
and narrate procedures [14], [54], [55].

Despite extensive progress, existing surveys are fragmented.
Some focus narrowly on action recognition benchmarks, others
on specific model families such as CNNs, RNNs, or trans-
formers, while more recent works highlight multimodality but
lack integration of datasets, paradigms, and architectures into
a unified framework [14], [15], [56]–[59]. None provide a
structural lens that explains why architectures evolved as they
did: namely, as responses to dataset-induced pressures and
paradigm shifts. Without this integration, the field lacks a
conceptual map that both contextualizes prior advances and
anticipates future trends.

In this work, we present a dataset-driven survey of video
understanding, emphasizing how the intrinsic structural prop-
erties of datasets, rather than chronological or superficial
categorizations, drive architectural design and shape progress.
By interpreting architectures as concrete responses to dataset
complexity and task demands, our perspective shows a clear
trajectory: from short-term clip classification to context-aware,
hierarchical, relational, multimodal, and interactive reason-
ing. This framework not only consolidates prior work but
also uncovers the underlying forces governing architectural
innovation, providing actionable guidance for research and
deployment. Our key contributions are:

i. Filling a dataset-centric gap. Existing surveys are largely
task- or architecture-focused, overlooking how dataset
characteristics and their induced inductive biases fun-
damentally shape model design, performance, and task
suitability. We address this gap by providing a unified,
dataset-driven perspective on video understanding.

ii. Dataset-driven synthesis and analysis. We systematically
examine how dataset properties, e.g., motion complexity,
temporal span, hierarchical structure, and multimodal rich-
ness, guide architectural evolution. By linking these char-
acteristics to performance trends across action recognition,
temporal localization, video retrieval, and video question
answering, we show recurring design patterns aligned with
dataset-induced biases and the structural pressures driving
model innovation.

iii. Prescriptive roadmap and actionable guidance. Build-
ing on these insights, we offer a task-oriented roadmap
for selecting and designing models that balance tempo-
ral, relational, and multimodal reasoning with scalability
and deployment constraints. We outline forward-looking
directions, proposing a framework that integrates dataset
properties, architectural principles, and task-specific con-
siderations to guide the next generation of video under-
standing models.

By situating datasets, architectural responses, and inductive
biases within a unified framework, this survey delivers both a
comprehensive retrospective and a forward-looking roadmap,
guiding the development of general-purpose, robust, and scal-
able video understanding systems.

II. Positioning Within Prior Surveys
The literature on video understanding is vast and rapidly

expanding. Existing survey efforts can broadly be grouped into

four complementary strands: (i) general surveys summarizing
methods for action recognition and video analysis (e.g., [12],
[14], [15], [61], [62], [85]), (ii) focused reviews on specific
architectural families (e.g., CNNs, RNNs, transformers) or
modalities (e.g., skeleton, audio-visual, vision-language) (e.g.,
[10], [15], [56], [64], [68], [86], [87]), (iii) evaluations and
benchmark-driven comparative analyses (e.g., [13], [24], [80]–
[83]), and (iv) surveys on emerging paradigms such as self-
supervision, generative modeling, and reinforcement/continual
learning (e.g., [48], [79], [88]–[92]). In this section, we group
prior surveys into coherent categories and highlight how
our work extends their scope by adopting a dataset-centric
perspective. Our goal is not to exhaustively catalog prior work
but to position representative survey efforts relative to the
unique contributions of this article (see Table I).

Classical and deep-learning surveys. Early surveys fo-
cused on handcrafted features and classical pipelines (e.g.,
spatio-temporal interest points [93], HOG3D [94], dense tra-
jectories [95]) before tracing the transition to deep learning.
Representative examples include Aggarwal and Ryoo [60]
(pre-deep era) and Herath et al. [61], which reviewed the evo-
lution from 2D CNNs to 3D CNNs and two-stream architec-
tures. These works documented historical backbone evolution
and early benchmark evaluations (e.g., [1], [33], [34]). While
foundational, these surveys were largely architecture-centric
and focused on classification tasks. They overlooked how
dataset structural properties (e.g., temporal span, composi-
tional complexity, multimodal richness) induce dataset-driven
inductive biases in architectures and paradigms, and did not
account for the influence of large-scale multimodal pretraining,
VLMs, or LLMs on model evolution. In contrast, our survey
systematically links dataset characteristics to both architectural
and paradigm choices, showing the structural pressures that
drive model innovation and task-specific performance.

Transformer and modern architecture surveys. With the
rise of attention-based models, several surveys and tutorials
have examined transformers in vision and video (e.g., Video
Transformers and ViT extension [63], [64], [96]), analyzing de-
sign patterns (e.g., space-time factorization) and computational
trade-offs with benchmark comparisons. While indispensable
for understanding architectural design, these surveys remain
narrow. They seldom consider (i) dataset-aligned inductive
biases beyond attention, such as graph-based structures or
generative modeling priors, (ii) interactions between architec-
tures and learning paradigms, including how masked or multi-
modal objectives reshape transformers’ effective biases, or (iii)
dataset-driven motivations, such as which dataset properties
catalyzed the shift toward transformers. Our work situates
transformers within a broader taxonomy and explicitly ana-
lyzes how dataset characteristics influence their downstream
utility and task-specific performance.

Multimodal and VLM/LLM surveys. As video under-
standing increasingly incorporates language and audio, surveys
have emerged on multimodal learning (e.g., video captioning,
retrieval, cross-modal pretraining [14], [15], [65], [66]). These
works largely catalogue datasets, alignment objectives, and
evaluation protocols without explaining how dataset charac-
teristics shape multimodal model design and paradigm se-
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TABLE I: Comparison of major video understanding surveys. Unlike prior works, our survey adopts a dataset-centric
perspective, systematically linking dataset properties to architectural design, paradigm choices, and task-driven model evolution.
It provides a prescriptive roadmap for next-generation video understanding.

Representative surveys Scope / Focus Limitations Our distinction / contribution
Classical & deep-learning
surveys
(e.g., [60]–[62])

Handcrafted features; early deep
pipelines (e.g., 2D/3D CNNs, two-
stream, etc.).

Architecture- and classification-centric;
neglect dataset-driven design pressures.

Connect dataset properties (temporal span, motion
complexity, compositionality) to architectural evo-
lution; show how classical/deep pipelines adapt to
dataset-induced inductive biases.

Transformer / modern ar-
chitecture surveys
(e.g., [27], [63], [64])

Transformers; attention mecha-
nisms; efficiency trade-offs.

Focus on transformers; limited discus-
sion of dataset-induced motivations or
alternative architectures.

Situate transformers in broader evolution of video
models; link adoption to dataset properties and task-
specific demands; highlight design patterns enabling
spatiotemporal and relational reasoning.

Multimodal / VLM / LLM
surveys
(e.g., [14], [15], [65], [66])

Video-language pretraining, cross-
modal datasets, emerging video-
LLMs.

Catalogue datasets/models without ex-
plaining how dataset structure drives
multimodal alignment and architectural
choices.

Treat multimodal alignment as dataset-driven design;
analyze modality dominance and hybrid pipelines;
connect VLM/LLM pretraining to structural and tem-
poral dataset properties.

Structured representation
surveys
(e.g., [13], [26], [67]–[72])

Skeletons, graphs, relational reason-
ing, multi-agent interactions.

Modality-specific; rarely link represen-
tational choices to dataset structure (e.g.,
agent density, relational complexity).

Position graphs within unified design space; highlight
how dataset properties dictate the choice of graph-
based, attention-based, or convolutional representa-
tions for relational reasoning.

Self-supervised / genera-
tive / pretraining surveys
(e.g., [9], [73]–[79])

Contrastive, masked, generative,
and hybrid pretraining objectives.

Method-centric; seldom connect pre-
training choice to dataset properties and
task demands.

Emphasize dataset-informed paradigm selection;
show when contrastive, masked, or generative pre-
training improves task-specific performance; highlight
hybridization guided by temporal, compositional, and
multimodal structure.

Benchmarks / dataset sur-
veys
(e.g., [13], [24], [80]–[84])

Benchmark datasets, evaluation
metrics, collection protocols.

Treat datasets as static; ignore structural
properties and their influence on model
evolution.

Introduce datasets as structural lenses; link temporal
span, motion complexity, compositional depth, agent
density, and multimodality to model design and
paradigm selection.

Foundation-model surveys
(e.g., [10], [14])

Foundation models across video
tasks and modalities.

Emphasize model scale, not dataset- or
task-driven evolution.

Connect foundation models to dataset-induced pres-
sures; integrate them into the dataset-centric taxonomy
of architectures and paradigms.

Ours (2025) Comprehensive coverage: from
classical action recognition to
multimodal, VLM-, and LLM-
augmented video understanding.

– First survey to unify datasets, architectures, and
paradigms under a dataset- and task-centric lens;
provides prescriptive guidance linking dataset struc-
ture to architectural design, paradigm adoption, and
downstream performance.

lection. We advance this perspective by (i) treating multi-
modal alignment as a dataset-informed paradigm, reflecting
invariances induced by different data regimes, (ii) analyzing
modality imbalance and modality-dominance failure modes as
consequences of dataset properties, and (iii) situating VLM-
and LLM-augmented models within hybrid pipelines integrat-
ing generative priors and self-supervision, highlighting how
dataset structure guides paradigm and architectural choices.

Structured representations. Many surveys cover skeleton-
based action recognition and graph-based approaches for mod-
eling human-object interactions, multi-agent dynamics, and re-
lational reasoning [13], [26], [67]–[72]. While valuable, these
works largely remain modality-specific and rarely consider
how dataset properties influence the choice of representational
paradigms. Our survey situates graph-based representations
within a broader architecture and paradigm design space,
showing how dataset characteristics, e.g., agent density, rela-
tional complexity, compositional depth, drive the selection of
graph, attention, or self-supervised representations for effective
spatiotemporal and relational reasoning.

Self-supervision, generative, and pretraining surveys.
Surveys on self-supervised and generative modeling [9], [73]–
[79] summarize objectives, augmentations, and downstream
transfer. While informative, they seldom analyze how dataset
characteristics guide pretraining paradigm selection. In con-
trast, our survey emphasizes alignment between dataset prop-
erties and learning paradigms, highlighting when contrastive,
masked, or generative objectives are most effective, and how

hybridization or curriculum strategies can be guided by struc-
tural and temporal dataset properties.

Benchmarks and dataset-centered studies. Several sur-
veys focus on benchmarks [13], [24], [80]–[84], evaluation
practices, and dataset analyses (e.g., Kinetics [16], EPIC-
KITCHENS [22], [37]). While useful, they often treat datasets
as static resources. In contrast, we adopt datasets as struc-
tural lenses, analyzing properties such as temporal span,
compositionality, annotation granularity, multimodal richness,
and agent density, and show how these drive paradigm and
architectural choices, enabling more principled guidance for
model design, pretraining, and dataset construction.

Reinforcement, continual, and privacy-aware learning.
Some surveys review reinforcement learning, continual learn-
ing, and federated/privacy-preserving approaches, highlighting
challenges such as catastrophic forgetting, non-i.i.d. data, and
sparse rewards [97]–[102]. While valuable, these works are
often disconnected from mainstream video understanding.
From a dataset-centric perspective, we highlight how specific
dataset properties, such as long-horizon egocentric sequences
or distributed data collection, can influence the applicability
of these strategies, providing guidance on when they may
complement standard video understanding pipelines.

III. Datasets as Structural Drivers

Rather than treating datasets as static benchmarks, we frame
them as structural lenses that actively shape what video models
can learn. Motion complexity, temporal span, hierarchical
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TABLE II: Datasets as structural lenses for video understanding. The table organizes major datasets by structural properties:
supervision, compositionality, multi-agent density, and temporal span, and highlights the architectural advances they spurred.
Row colors indicate the dataset’s primary focus: motion/fine-grained actions (red), procedural/compositional tasks (green),
temporal/stepwise tasks (blue), VLM/video-language tasks (purple), and mixed categories for overlaps. View: 3P = third-
person, Ego = egocentric. Mods: R = RGB, F = Flow, A = Audio, D = Depth, P = Pose/Skeleton, I = IR, T = Text, M = IMU.
Anno: Cls = class labels, Temp = temporal segments, ST = spatio-temporal boxes, Cap = captions, Step = procedural steps,
QA = question answering, Grnd = text grounding. Struct: Amp/Span/Comp/Agents, where Amp = motion amplitude (H/M/L),
Span = temporal span (S/M/L), Comp = compositionality (-/C/H = none/compositional/hierarchical), Agents = agent density
(L/M/H). Impulse: 2S = two-stream, 3D = 3D CNN, TSN/TCN, TRF = transformers/attention, ST-GCN = graph/skeleton, VLM
= vision-language pretraining, HOI = hand-object interaction, Det = localized detection.

Dataset Year Scale View Mods Anno Struct Primary Task Impulse
KTH actions [103] 2004 2.4K clips 3P R Cls H/S/-/L Simple actions 2S, 3D
Weizmann [104] 2005 90 clips 3P R Cls H/S/-/L Simple actions 2S
IXMAS Actions [105] 2006 1148 clips 3P (multi-view) R Cls M/S/-/L View invariance 2S
Hollywood [106] 2008 1.4K clips 3P R Cls M/S/-/M Movie actions in-the-wild 2S
Hollywood2 [107] 2009 1.7K clips 3P R Cls M/S/-/M Movie actions 2S
Collective Activity [108] 2009 44 videos 3P R ST (groups) M/S/-/H Social/group acts GNN
Olympic Sports [109] 2010 783 clips 3P R Cls H/S/-/L Sports actions 2S
MSRAction3D [110] 2010 567 clips Kinect frontal D,P Cls M/S/-/L Depth/skeleton actions ST-GCN
MSRActionPairs3D [110] 2010 360 clips Kinect frontal R,D,P Cls M/S/-/L Interaction pairs ST-GCN
HMDB51 [34] 2011 6.8K clips 3P R Cls M/S/-/M Diverse actions 2S, 3D
UCF101 [33] 2012 13K clips 3P R Cls H/S/-/L Actions/sports 3D, TSN
UTKinect-Action3D [111] 2012 199 clips Kinect frontal R,D,P Cls M/S/-/L Skeleton actions ST-GCN
G3D-Gaming [112] 2012 20 classes Kinect frontal R,D,P Cls H/S/-/L Gaming actions ST-GCN
UCF50 [113] 2013 6.7K clips 3P R Cls H/S/-/L Actions/sports 3D
Florence3D [114] 2013 215 clips Kinect frontal R,D,P Cls M/S/-/L Skeleton actions ST-GCN
JHMDB [115] 2013 928 clips 3P R,P ST M/S/-/M Pose + localized acts Det
Sports-1M [1] 2014 1M clips 3P R Cls H/S/-/L Large-scale sports 3D pretrain
Northwestern-UCLA [116] 2014 1.5K clips Kinect multi-view R,D,P Cls M/S/-/L Cross-view actions ST-GCN
UWA3D (I/II) [68] 2014/15 701/1.1K Kinect multi-view R,D,P Cls M/S/-/L View-invariant depth ST-GCN
NTU RGB+D 60 [117] 2016 56K clips 3P R,D,P,IR Cls M/S/-/L Large-scale skeleton ST-GCN
InfAR [118] 2016 600 clips 3P I Cls M/S/-/L Infrared actions Robustness
Thermal Simulated Fall [119] 2016 44 clips 3P I Cls L/S/-/L Fall detection (IR) Safety
DALY [120] 2016 3.6K ann. 3P R ST+Temp M/M/-/M Daily ST actions Det
MultiTHUMOS [121] 2016 400 vids 3P R Temp (dense) M/M/C/M Dense multilabel acts TRF
Volleyball (group activity) [122] 2016 4830 clips 3P R ST (players)+Cls M/S/-/H Group activity GNN, Det
NfS (object tracking) [123] 2017 100 vids 3P R Boxes M/M/-/M Object tracking Det
Kinetics-400 [16] 2017 306K clips 3P R Cls H/S/-/M General actions 3D (I3D), TRF
AudioSet (video) [124] 2017 2M clips 3P R,A Weak labels M/S/-/M AV tagging/pretrain AV Fusion
Kinetics-Skeleton [26] 2018 260K 3P P Cls M/S/-/M Pose-only actions ST-GCN
AVA [21] 2018 211K ann. 3P R,F ST L/M/-/H Atomic ST actions (multi-agent) Det, TRF
Diving48 [125] 2018 18K 3P R,F Cls L/S/-/L Fine-grained dives TRF
Moments in Time [126] 2019 1M+ 3P R,A Cls M/S/-/M Event recognition 3D, TRF
Kinetics-600/700 [16] 2018/19 496K/650K 3P R Cls H/S/-/M Scale for pretraining 3D, TRF
NTU RGB+D 120 [127] 2019 114K 3P R,D,P,IR Cls M/S/-/M Larger skeleton ST-GCN
FineGym [128] 2020 32K 3P R Cls L/S/H/L Fine-grained hierarchy TRF
VGGSound [129] 2020 210K clips 3P R,A Cls M/S/-/M Audio-visual events AV Fusion
AVA-ActiveSpeaker [130] 2020 3.65M frames 3P R,A ST (speaker) L/S/-/H AV diarization AV Fusion, Det
UAV-Human [131] 2021 22K clips 3P (UAV) R,P Cls M/S/-/M Aerial human acts Robustness
UCF101-24 [132] 2024 24 classes 3P R ST H/S/-/M ST detection Det, 3D
EPIC-SOUNDS [133] 2025 100h Ego A,R Temp L/M/C/M Ego audio events AV Fusion
Berkeley MHAD [134] 2013 660 clips 3P R,D,P,A Cls M/S/-/L Multisensor fusion ST-GCN
Something-Something V1/V2 [17] 2017/18 108K/221K clips 3P R Cls L/S/C/M Object-centric relations TRN, TRF
CAD-60 [135] 2011 68 clips Kinect single-view R,D,P Cls L/S/-/L ADL+HOI (depth) ST-GCN
GTEA Gaze [136] 2012 17 vids Ego R,A (gaze) Temp L/M/C/M Egocentric HOI + gaze HOI
CAD-120 [137] 2013 120 clips Kinect frontal R,D,P Temp L/M/C/M HOI sequences (procedural) ST-GCN, TRN
50 Salads [138] 2013 50 vids 3P R Temp+Step L/M/H/L Fine-grained cooking RNN/TCN
Breakfast [139] 2014 77h 3P R Temp+Step L/M/H/L Procedural activities RNN/TCN
GTEA Gaze+ [140] 2015 37 vids Ego R,A (gaze) Temp L/M/C/M Egocentric HOI + gaze HOI
SYSU 3D HOI [141] 2015 480 clips 3P R,D,P Cls L/S/-/M HOI (depth) ST-GCN
EPIC-KITCHENS [37] 2018 39K clips Ego R,F Temp L/M/C/M HOI, fine-grained egocentric HOI, TRF
YouCook2 [142] 2018 15K segs 3P R,T Temp+Step L/M/H/M Cooking segmentation TRF
EGTEA Gaze+ [143] 2018 28 h Ego R,A (gaze) Temp L/M/C/M Egocentric HOI + gaze HOI
YouCook2-BoundingBox [144] 2018 15K seg 3P R ST (HOI) L/M/H/M Obj-centric cooking Det, HOI
COIN [145] 2019 12K vids 3P R,T Step L/M/H/M Instructional steps TRF
CATER [146] 2019 5.5K Synth R Temp L/S/C/L Compositional reasoning TRF
CLEVRER [147] 2019 20K Synth R,T QA L/S/C/L Causal reasoning TRF
CrossTask [148] 2019 4.7K 3P R,T Step L/M/H/M Weakly sup. steps TRF
MOMA [149] 2021 2.4K vids 3P/Ego R,T Hier L/M/H/H Multi-agent hierarchy TRF, GNN
MOMA-LRG [150] 2022 148 h 3P/Ego R,T Hier L/M/H/H Multi-agent hierarchy TRF, GNN
ADL [151] 2009 10h 3P R Cls L/S/-/L Household ADL 2S
MSRDailyActivity3D [152] 2012 320 clips Kinect frontal R,D,P Cls L/S/-/L ADL (depth) ST-GCN
MPII Cooking [153] 2012 3.7K segs 3P R Temp L/M/C/M Cooking steps (procedural) TSN, TRN
MPII Cooking 2 [153] 2015 273 clips 3P R Temp L/M/C/M Fine-grained cooking TRN
EPIC-KITCHENS-100 [22] 2020 90K clips Ego R,F,A Temp+Step L/M/H/M HOI + narration HOI, TRF, VLM
THUMOS’14 [154] 2014 24 classes 3P R Temp H/M/-/L Temporal detection 3D, TSN
ActivityNet [18] 2015 28K clips 3P R Temp M/M/-/M Temporal localization 3D, TSN
Charades [19] 2016 66K segs 3P R,F Temp L/L/C/H Overlapping indoor actions TRF, Det
PKU-MMD I [155] 2017 1.1K clips 3P R,D,IR,P Temp M/M/-/M Multimodal detection ST-GCN
FineAction [121] 2018 11.6K clips 3P R Cls H/S/-/M Temporal action localization 2S
Charades-Ego [20] 2018 68K Ego+3P R Temp L/M/C/H Ego/3P alignment TRF, HOI
SoccerNet [156] 2018 500 games 3P R Temp H/M/-/M Sports spotting TRF
HACS [157] 2019 1.5M clips 3P R,F Temp M/M/-/M Temporal localization (large) TRF
PKU-MMD II [158] 2020 1K 3P R,D,IR,P Temp M/M/-/M Multimodal detection ST-GCN
BDD100K (video) [159] 2020 100K vids 3P R,GPS,IMU Boxes/Tracks M/M/-/H Driving perception/TA Det, TRF
MSVD (YouTube2Text) [160] 2011 1.9K vids 3P R,T Cap L/S/-/M Captioning VLM
MSR-VTT [161] 2016 200K pairs 3P R,T Cap M/S/-/M Captioning/retrieval VLM
LSMDC (Movies) [162] 2016 128K sent. 3P R,T Cap M/S/-/H Movie-description VLM
DiDeMo [163] 2017 10K 3P R,T Grnd L/S/-/M Moment grounding TRF, VLM
ActivityNet Captions [164] 2017 20K vids 3P R,T Temp+Cap M/M/C/M Dense captioning TRF, VLM
TGIF-QA [165] 2017 104K QA 3P R,T QA L/S/-/M Video QA TRF
MSRVTT-QA [166] 2017 10K vids 3P R,T QA L/S/-/M QA TRF
Charades-STA [167] 2017 9.8K pairs 3P R,T Grnd L/M/C/H Language grounding TRF
TVQA [168] 2018 153K QA 3P R,T QA L/M/-/H Multimodal QA (subs) TRF
VATEX [169] 2019 41K 3P R,T Cap M/S/-/M Multilingual captions VLM
NExT-QA [170] 2021 5.4K vids 3P R,T QA L/M/C/M Temporal reasoning QA TRF
AGQA [171] 2021 192M QA 3P R,T QA L/M/C/M Compositional QA TRF
WebVid-2M/10M [172] 2021 2.5M/10M pairs 3P R,T Cap (weak) M/L/-/M VLM pretraining VLM
HD-VILA-100M [173] 2022 100M 3P R,T,A Cap (weak) M/L/-/M Hi-res pretrain VLM
Ego4D [174] 2022 3.7K h Ego R,A,T Multi-task (NLQ, AV, gaze) L/L/H/H Long-term egocentric HOI, TRF, VLM
VidChapters-7M [175] 2023 7M seg 3P R,T Temp+Cap L/M/C/M Chaptering/summary TRF, VLM
InternVid [176] 2023 234M 3P R,T Cap (weak) M/L/-/M Video-text pretrain VLM
Panda-70M [177] 2024 70M 3P R,T,A Cap (weak) M/L/-/M Multimodal pretrain VLM
MiraData [178] 2024 16K h 3P R,T,A Cap (weak) M/L/-/M Multimodal pretrain VLM
OpenVid-1M [179] 2025 1M vids 3P R,T Cap (weak) M/L/-/M VLM pretraining VLM
OpenVidHD-0.4M [179] 2025 433K vids 3P R,T Cap (weak) M/L/-/M VLM pretraining VLM
Koala-36M [180] 2025 36M 3P R,T,A Cap (weak) M/L/-/M Multimodal pretrain VLM
AVA-Kinetics [181] 2020 230K ann. 3P R ST M/M/-/H Large ST localization TRF, Det
TACOS [182] 2013 127 vids 3P R,T Grnd L/M/C/M Grounding in cooking TRF, VLM
HowTo100M [183] 2019 136M clips 3P R,A,T Weak Align L/L/H/M Instructional pretraining VLM, TRF

Reading guide. Anno shows what the dataset supervises (e.g., procedural steps, spatio-temporal boxes, captions/QA). Struct summarizes motion, temporal, and
relational aspects. Impulse highlights modeling advances spurred by the dataset (e.g., Kinetics→I3D/Transformers; Something-Something→relation reasoning;
AVA/Volleyball→ detection/graph models; EPIC/Ego4D→ HOI/egocentric transformers; HowTo100M/WebVid→ vision-language pretraining).
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composition, multi-agent interactions, and multimodal sig-
nals define not only task difficulty but also the inductive
biases, representational geometries, and reasoning strategies
architectures should adopt. From early datasets of isolated,
high-amplitude actions to procedurally rich, fine-grained, and
contextually grounded corpora, each dataset introduces distinct
spatiotemporal, relational, and multimodal challenges. This
reframes dataset design as a driver of architectural evolution,
coordinating the field’s shift from narrow action recognition
toward general, procedural, and multimodal video understand-
ing, a connection rarely foregrounded in prior surveys.

A. A Dataset-Bias-Architecture Framework

We formalize this relationship as a dataset-bias-architecture
framework, in which benchmark properties impose structural
pressures that guide inductive biases and, ultimately, architec-
tural design. Coarse, motion-centric datasets encouraged two-
stream CNNs and 3D ConvNets optimized for local spatiotem-
poral cues. Procedural and long-horizon corpora demanded
recurrence, temporal hierarchies, and attention-based models
to capture extended workflows. Multi-agent benchmarks fos-
tered relational reasoning through graph-based representations,
while multimodal corpora drove the rise of alignment modules
and large-scale video-language foundation models. Seen in
this way, the historical progression of architectures can be
interpreted as a sequence of responses to dataset-imposed
constraints, with datasets functioning as engines that guide in-
novation toward greater temporal depth, relational complexity,
and multimodal integration.

Table II summarizes the most popular datasets from the
past 20 years, with row colors indicating their primary
categories and overlaps. Early benchmarks were dominated
by motion-focused datasets, while procedural, temporal, and
video-language datasets have grown steadily, reflecting the
community’s increasing interest in fine-grained actions, step-
wise reasoning, and multimodal understanding.

Below, we discuss these four main categories in detail,
highlighting their evolution and the trends revealed by this
collection of benchmarks.

B. Motion & Fine-Grained

Motion complexity. Motion represents the foundational
signal in video understanding, providing critical cues for action
discrimination, intent inference, and interaction modeling.
Across datasets, the manner in which motion is captured,
emphasized, and structured varies dramatically, shaping both
model development and evaluation strategies. Early bench-
marks, including KTH [103], Weizmann [104], HMDB51 [34],
and UCF101 [33], illustrate the initial stage of dataset design,
where the focus was on clearly perceivable human movements
in relatively controlled environments. These datasets primar-
ily feature high-amplitude, visually salient motions, such as
running, basketball dunking, or swinging, often captured from
third-person viewpoints with limited background clutter. Such
design enabled early architectures, e.g., 3D ConvNets, two-
stream networks, and optical-flow-based models, to effectively

UCF101
Skateboarding

Diving48 Forward

Backward

Reverse

Inward

Pike

Tuck

Pike

Free 25twist

No twist

No twist

No twist

15som

25som
15som

25som

Forward 1.5 
somersaults,
 no twists, pike

Backward 2.5 
somersaults, 
no twists, tuck

Reverse 1.5 
somersaults, 
2.5 twists, free

Inward 2.5 
somersaults, 
no twists, pike

Fig. 2: Motion complexity across datasets. UCF101 (top)
illustrates high-amplitude actions such as skateboarding, where
global body motion dominates. Diving48 (bottom) contains
four dive categories distinguished by subtle variations in
rotation, twist, and posture, requiring fine-grained motion
modeling. The contrast reflects the shift from early benchmarks
focused on salient whole-body movements to modern datasets
that demand recognition of nuanced micro-motions.

learn coarse global motion patterns, yet provided limited chal-
lenge for modeling subtle, context-dependent, or overlapping
actions [24], [38], [184], [185].

Progressing beyond coarse motion, intermediate datasets
introduced more realistic variability in camera angles, scene
context, and actor appearance. Hollywood [106], Hollywood2
[107], and Collective Activity [108] expose models to com-
plex backgrounds, multi-person interactions, and social con-
text, while datasets like MSRAction3D [110] and UTKinect-
Action3D [111] provide depth and skeleton information to
capture 3D body dynamics. These datasets necessitate models
capable of disentangling actor motion from background varia-
tions, handling viewpoint changes, and interpreting relational
motion among multiple agents. Similarly, group-activity and
social interaction datasets, including Volleyball [122] and
DALY [120], require tracking multiple agents simultaneously,
highlighting the importance of relational reasoning and graph-
structured representations for motion modeling [3], [186].

Recent datasets further emphasize fine-grained, subtle,
and context-dependent motion, presenting new challenges for
model design. FineGym [128] and Diving48 [125] exemplify
actions where minor differences in rotational velocity, limb
alignment, or entry angle define entirely distinct classes,
requiring temporal precision and spatial fidelity. Here, global
motion representations are insufficient; models should cap-
ture micro-motion, joint trajectories, and nuanced temporal
dependencies, motivating architectures such as multi-scale 3D
convolutions, temporal transformers, and pose-based repre-
sentations [187]–[190]. Figure 2 illustrates this progression:
UCF101 exemplifies high-amplitude, global body motions,
whereas Diving48 demonstrates fine-grained distinctions in ro-
tation, twist, and posture, highlighting the evolution from early
salient-motion datasets to benchmarks that require nuanced
micro-motion modeling. Similarly, AVA [21] demonstrates the
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challenges of multi-person, occluded scenarios where low-
amplitude gestures such as handshake or object manipulation
should be disambiguated within complex visual contexts. In
egocentric datasets like EPIC-KITCHENS [22], [37], motion
complexity is further amplified by camera ego-motion and
hand-object interactions, requiring models to decouple actor-
induced motion from environmental and self-motion dynam-
ics, a task largely absent in early third-person datasets.

Motion complexity in modern datasets is inherently multi-
dimensional, capturing variations in amplitude, temporal co-
herence, spatial coverage, and multi-agent interactions. High-
amplitude actions, such as jumping or running, contrast with
low-amplitude, localized gestures like typing or stirring. Tem-
poral coherence distinguishes cyclic patterns, such as dribbling
or walking, from discrete, isolated movements. Spatial cover-
age differentiates whole-body motions from localized actions
involving hands, facial expressions, or small objects. Multi-
agent interactions introduce additional layers of complexity,
requiring models to capture interdependent motions, relational
dynamics, and social context. Extended temporal datasets such
as Breakfast [139] and Charades [19] further demand disen-
tanglement of overlapping motion streams, where concurrent
actions like chopping vegetables while attending to boiling
water should be understood as temporally and semantically
distinct yet relationally dependent [191]–[193]. Collectively,
these complexities underscore that motion is not a single
attribute but a multi-faceted property that directly informs
dataset design, feature representation, and model architecture.

Action concepts. Beyond motion itself, the semantic con-
ceptualization of actions within datasets significantly shapes
model learning, generalization, and reasoning. Early large-
scale datasets such as Sports-1M [1] and Kinetics-400 [16]
provide general action categories that emphasize robust recog-
nition of prominent spatiotemporal patterns, including running,
jumping, or playing instruments. These coarse labels enable
models to capture broad motion trends and object-affordance
cues but often fail to discriminate subtle, context-dependent
differences, limiting fine-grained generalization. In contrast,
specialized benchmarks such as FineGym and Diving48 de-
mand precise discrimination of nuanced variants, requiring
models to attend to detailed body alignments, rotations, and
micro-temporal cues [125], [128]. First-person video datasets
further integrate object semantics and environmental con-
text, as shown in EPIC-KITCHENS, where differentiating cut
tomato from cut cucumber relies not only on hand motion but
also on object identity, affordances, and interaction dynamics.
Atomic action datasets, including AVA, extend this challenge
to multi-agent and overlapping actions, highlighting the neces-
sity of spatiotemporal attention, multi-scale feature extraction,
and graph-based relational modeling [194]–[196].

Through this lens, the evolution of motion-focused and
fine-grained datasets reflects a broader trajectory in video
understanding: from coarse, single-agent, high-amplitude ac-
tions to multi-agent, context-rich, and micro-motion-sensitive
activities. This progression has directly shaped model design,
encouraging the development of architectures capable of disen-
tangling overlapping motion streams, reasoning over relational
and temporal hierarchies, and integrating multi-modal cues. By

situating model evaluation within this nuanced understanding
of motion complexity and action conceptualization, researchers
can better assess generalization, robustness, and zero-shot
reasoning, providing insights that directly inform both dataset
curation and the design of next-generation video models.

C. Procedural & Compositional
Hierarchical structure represents a fundamental dimension

of video datasets that is often underexplored. Real-world ac-
tions rarely occur in isolation; they are organized both seman-
tically and procedurally, and understanding these relationships
is crucial for models that aim to generalize, perform compo-
sitional reasoning, and handle multi-step activities. Datasets
differ in how they capture these hierarchies, and analyzing
these differences reveals structural pressures that shape model
design, evaluation, and generalization.

One form of hierarchy is taxonomic, which groups seman-
tically related actions under broader categories. Datasets such
as Sports-1M [1] and Kinetics [16] illustrate this approach:
fine-grained classes like soccer, basketball, and tennis are
unified under ball sports, providing shared features that mod-
els can exploit for recognition and zero-shot generalization.
Hierarchically grounded taxonomies enable models to transfer
knowledge across semantically similar actions, for example,
recognizing handball after learning soccer and basketball,
by using structural similarities in objects, motion patterns,
and context [2], [24], [197]–[199]. Figure 3a visualizes a
taxonomic hierarchy for ball sports in Kinetics-400, grouping
related actions such as basketball dribbling, dunking, and
shooting under a broader category, which supports semantic
generalization and compositional reasoning.

Compositional hierarchies encode procedural dependen-
cies among sub-actions that constitute complex tasks. In-
structional datasets, including CAD-60 [135], GTEA Gaze
[136], CAD-120 [137], 50 Salads [138], Breakfast [139],
HowTo100M [183], and YouCook2 [142], capture sequences
such as open milk carton, pour milk, add cereal, stir. By
representing activities as sequences of sub-actions, these
datasets encourage models to learn action primitives, reason
over temporal structure, and generalize to novel procedural
combinations [28], [186], [191]–[193], [200]–[216]. Larger-
scale egocentric datasets such as EPIC-KITCHENS [37] ex-
tend this compositional reasoning to fine-grained hand-object
interactions and continuous workflows, highlighting the need
for hierarchical transformers, relational graphs, and attention
mechanisms capable of capturing both short-term manipu-
lations and long-range dependencies. Figure 3b illustrates a
procedural hierarchy in Breakfast, showing how sub-actions
like take bowl, pour cereals, and stir compose a complete task.

A third type of hierarchy is contextual, which situates
actions within their environment, interacting objects, or so-
cial context. Identical motions may correspond to different
semantic roles depending on context. Datasets such as AVA
[21] and EPIC-KITCHENS [37] capture these distinctions:
lifting a hand may mean picking up a cup, waving hello,
or grabbing a dumbbell, depending on surrounding cues and
task stage. Figure 3c further demonstrates contextual and
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Ball sports

Basketball

Dribbling Dunking Shooting

Soccer

Kicking ball Shooting goal

Baseball/Softball

Catching/Throwing
baseball

Catching/Throwing
softball

Cricket

Playing cricket

Volleyball

Playing volleyball

Frisbee

Catching/Throwing
frisbee

(a) Ball sport actions in Kinetics-400, grouped by category (e.g., dribbling, dunking, shooting under Basketball),
illustrating taxonomic hierarchies that support generalization and compositional reasoning.

(b) Making cereal in Breakfast, showing sub-actions (take bowl, pour cereals, pour milk, stir) that form the overall task.

(c) (Left) Frequently co-occurring verb-noun pairs in action segments. (Right) Next actions, excluding repetitions of the
same action. Images adapted from [37]. The contextual hierarchy is evident (highlighted in red), e.g., ‘turn on’ applied
to tap, kettle, hob, microwave leads to diverse subsequent actions, e.g., dry, turn on, remove, wash, etc.

Fig. 3: Hierarchical and compositional structures in video datasets. (a) Kinetics-400: taxonomic hierarchy of ball sport
actions showing semantic groupings that support generalization and compositional reasoning. (b) Breakfast: procedural activity
sequence illustrating sub-actions that compose a complete task. (c) EPIC-KITCHENS: contextual hierarchy of verb-object
actions, highlighting how the same verb can lead to different next actions depending on context. Together, these examples
emphasize the importance of hierarchical and relational structures for modeling and understanding complex human activities.

compositional hierarchies in EPIC-KITCHENS, where fine-
grained hand-object interactions form continuous workflows.
Modeling contextual hierarchies requires integrating visual,
temporal, and environmental information, motivating multi-
modal and context-aware representations [3], [29]–[31], [44],
[194], [196], [200], [217]–[220].

Encoding hierarchical, procedural, and contextual relation-
ships directly influences model performance and generaliza-
tion. Without such hierarchies, models may confuse visu-
ally similar sub-actions with distinct semantic roles, e.g.,
cut carrot versus cut cucumber, or misinterpret multi-step
tasks. Hierarchical annotations, whether explicit or inferred,
provide the relational structure necessary to reason over atomic
actions, their composition, and context. This facilitates zero-
shot learning, cross-domain transfer, and the development of
architectures that capture dependencies across scales, from
sub-action primitives to complex, multi-agent procedures [28],
[186], [191]–[193], [200]–[203], [205]–[210], [212]–[216].
Furthermore, hierarchical datasets enable graded evaluation,
reflecting errors at different semantic or procedural levels, and
inform the design of structured models such as graph networks,

hierarchical transformers, and temporally-aware RNNs/TCNs.
By systematically synthesizing procedural, compositional, and
contextual hierarchies across datasets of varying scale, view-
point, and modality, we illuminate recurring design patterns
and dataset-driven pressures that have shaped modern video
understanding architectures.

D. Egocentric & Long-horizon
Recent video datasets increasingly include long, continuous

sequences where multiple actions unfold sequentially or con-
currently, reflecting real-world activity complexity [19]–[22],
[37], [139], [172], [173], [176]–[180]. For instance, Charades
[19] captures everyday household activities with temporally
overlapping actions, such as pick up cup while walking to the
kitchen, requiring models to disentangle concurrent motion
streams and track multiple sub-actions. Procedural datasets
like Breakfast [139] provide dense temporal annotations across
multi-step activities; a single breakfast video may sequentially
include cut vegetables, boil water, add pasta, stir sauce,
embedding fine-grained sub-actions within a higher-level ac-
tivity. Correct interpretation demands hierarchical temporal
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(a) MPII Cooking 2: third-person static view showing procedural cooking activities.

(b) EPIC-KITCHEN-100: egocentric, moving camera capturing continuous
hand-object interactions, e.g., open bin, get tomato, put glass, highlighting
long-horizon temporal dependencies.

(c) Charades-Ego: combined third-
person and egocentric views captur-
ing overlapping everyday actions.

Fig. 4: Examples of egocentric and long-horizon video datasets highlighting temporal and procedural complexity. (a)
MPII Cooking 2 shows controlled procedural cooking actions from a third-person perspective. (b) EPIC-KITCHENS-100
captures continuous hand-object interactions from an egocentric perspective, emphasizing multi-step workflows and temporal
dependencies. (c) Charades-Ego combines third-person and egocentric views, showcasing overlapping everyday activities,
which challenge models to reason over concurrent and sequential actions. Collectively, these datasets demonstrate how varying
viewpoints, temporal granularity, and action overlap shape model design for long-horizon video understanding.

reasoning, from micro-level motions to macro-level procedural
dependencies, motivating architectures with multi-scale tem-
poral modeling [3], [25], [167], [218], [221]–[223].

Egocentric datasets further intensify temporal and relational
complexity. EPIC-KITCHENS [22], [37] captures continu-
ous hand-object interactions from a first-person perspective,
where actions like slice cucumber or pour milk occur within
fluid workflows including transitions, pauses, and context-
dependent variations. Figure 4 shows representative examples
of such datasets, including third-person procedural record-
ings (MPII Cooking 2 [153]), egocentric continuous interac-
tions (EPIC-KITCHENS-100 [22], [37]), and combined third-
person/egocentric views (Charades-Ego [20]), highlighting the
challenges of long-horizon temporal reasoning, procedural
complexity, and multi-view action overlap. Modeling such
sequences requires capturing both short-term manipulations
and long-range activity dependencies, highlighting the need
for hierarchical transformers, recurrent attention mechanisms,
or graph-based relational networks [3], [29]–[31], [44], [194],
[196], [200], [217]–[220]. Ego-motion introduces additional
challenges, as camera movement is tightly coupled with the
actor’s motion, requiring disentanglement of self-motion from
object-centric interactions.

Spatial grounding is equally critical. Datasets like AVA
[21] provide bounding boxes for multiple actors along with
temporally localized labels, enabling models to resolve over-
lapping or interacting actions such as talk to while pick up
object. Such dense spatiotemporal annotation supports multi-
agent reasoning, concurrent action detection, and interaction

understanding, which short-clip or flat-label datasets can-
not address. Similarly, first-person and multi-view procedural
datasets, e.g., CAD-60 [135], GTEA Gaze [136], CAD-120
[137], 50 Salads [138], YouCook2 [142], and MOMA [149],
[150], encourage architectures capable of integrating temporal
hierarchies, attention to hand-object relations, and relational
graph reasoning.

Temporal span, hierarchical structure, and egocentric per-
spective collectively introduce structural constraints that shape
model design [3], [200], [217], [218]. Short-clip or single-
action datasets favor frame-based or 3D convolutional net-
works for local motion modeling, whereas long-horizon
datasets like EPIC-KITCHENS-100 [22] or YouCook2-
BoundingBox [144] demand temporal transformers, memory-
aware modules, and graph-based relational networks to cap-
ture long-range dependencies, sub-action composition, and
multi-agent interactions [29]–[31], [44], [194], [196], [219],
[220]. Procedural and instructional datasets, including Break-
fast [139], COIN [145], and CATER [146], further drive hier-
archical and step-aware reasoning for sequential task modeling.
Egocentric datasets such as GTEA Gaze+ [140], [143] empha-
size attention to gaze, hand-object relations, and perspective-
specific dynamics, fostering relational modeling and context-
sensitive feature integration. Temporal and spatiotemporal an-
notations across datasets like AVA [21], Charades-Ego [20],
and PKU-MMD [155], [158] reinforce fine-grained local-
ization capabilities, guiding architectures toward concurrent
action detection and multi-agent reasoning.

Collectively, these design pressures show recurring patterns
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(a) Dataset comparison: Koala-36M vs. Panda-70M. Koala-36M provides a
larger, higher-quality dataset that improves alignment across visual, audio,
and textual modalities, ensuring better temporal consistency. Beyond richer
captions and more precise temporal splits, Koala-36M facilitates learning
of fine-grained hand-object interactions, multi-step procedural sequences,
and hierarchical action structures. Its improved filtering via the Video
Training Suitability Score (VTSS) enables models to focus on high-quality,
contextually informative video segments, supporting generalizable reason-
ing across diverse real-world activities.

(b) Quantitative evaluation of text-to-
video generation on Koala-36M vs.
Panda-70M. Models trained on Koala-
36M achieve higher performance in aes-
thetic quality, object recognition, multi-
object interactions, human action ac-
curacy, and color consistency, showing
that large-scale, multimodal datasets im-
prove understanding of complex, over-
lapping, hierarchical actions.

Fig. 5: Koala-36M illustrates the power of large-scale, multimodal datasets in advancing video understanding compared to
prior datasets such as Panda-70M. Images adopted from [180]. By combining visual, audio, and textual modalities, Koala-
36M allows models to disambiguate visually similar actions, track overlapping and multi-step procedural sequences, and
generalize across diverse contexts. The dataset’s rich temporal structure and detailed annotations support hierarchical and
compositional modeling, temporal reasoning, and cross-modal alignment, enabling models to capture complex human-object
interactions, anticipate future actions, and perform higher-level procedural understanding. Such multimodal resources bridge
the gap between specialized action recognition and general-purpose video processing, fostering robust, context-aware, and
scalable video understanding systems.

linking dataset properties to model evolution, demonstrating
how structural biases inherent in datasets actively guide inno-
vation in video understanding architectures.

E. Multimodal Corpora
Modern video datasets increasingly recognize that visual

information alone is often insufficient to fully capture the
semantics of actions, particularly in complex, fine-grained,
or procedural scenarios. Multimodal signals, including audio,
text, and metadata, introduce complementary cues that not only
improve performance but also impose structural pressures that
guide model design. Audio tracks convey critical information
about actions that may be visually subtle or partially occluded.
For example, the sound of chopping, pouring, or clinking
utensils allows models to disambiguate visually similar ges-
tures, such as cut tomato versus cut cucumber, where visual
cues alone are ambiguous. Environmental sounds, such as
footsteps, machinery, or applause, provide context for temporal
alignment and action recognition in real-world scenarios [124],
[129], [133], [172]–[174], [176]–[180].

Textual modalities enrich video understanding by provid-
ing semantic grounding that complements visual and au-
dio information. Instructional and narrated datasets, such

as HowTo100M [183], include natural language descriptions
aligned with video sequences, spanning detailed procedural
steps to high-level activity summaries. These annotations
enable models to map observed actions to semantic concepts,
bridging low-level motion cues and high-level activity rea-
soning. For instance, a sequence labeled whisk eggs and add
to pan allows a model to disambiguate visually similar sub-
actions such as stir ingredients versus mix batter. Temporal
reasoning is also facilitated, as textual cues often describe
action sequences that extend beyond the duration of individual
visual clips [144], [208], [224], [225].

Contextual information further shapes understanding by
situating actions within their environment. The same motion
may correspond to different actions depending on surrounding
objects or participants, for example, lifting a hand may indicate
pick up cup in a kitchen, wave hello in a social scene, or grab
dumbbell in a gym. AVA [21] captures such nuances via spatial
and contextual annotations in crowded movie scenes, whereas
EPIC-KITCHENS [22], [37] records first-person hand-object
interactions where object identity and placement are central to
action semantics. Multi-agent scenarios emphasize relational
reasoning, requiring models to track concurrent actions and
interactions over space and time [224], [226], [227].
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Across datasets, these multimodal properties systemati-
cally shape architectural evolution [41], [228], [229]. Small-
scale captioning datasets, e.g., MSVD [160] and MSR-VTT
[161], encourage cross-modal embedding learning. Temporally
grounded corpora, including DiDeMo [163] and ActivityNet
Captions [164], enforce fine-grained alignment between vi-
sual frames and textual cues, which drives the adoption of
frame-level attention and alignment mechanisms. Procedural
and instructional datasets, e.g., HowTo100M [183], TACOS
[182], VidChapters-7M [175], and compositional QA datasets
like AGQA [171], promote hierarchical and memory-aware
architectures capable of capturing long-range dependencies
and compositional action structure [10], [12], [14], [15],
[64]–[66], [79]. Egocentric and first-person datasets, including
EPIC-KITCHENS and Ego4D [174], emphasize relational
modeling and attention-based reasoning for hand-object and
agent-object interactions. Large-scale pretraining datasets, e.g.,
WebVid-2M/10M [172], HD-VILA-100M [173], InternVid
[176], Panda-70M [177], MiraData [178], OpenVid [179], and
Koala-36M [180], enable models to generalize across tasks and
support zero-shot reasoning in retrieval, captioning, temporal
grounding, and question answering [133], [172], [173], [176]–
[180]. Figure 5 shows the advantages of Koala-36M over prior
datasets like Panda-70M, showing how large-scale, multimodal
corpora with rich temporal structure and detailed annotations
facilitate hierarchical action modeling, multi-step procedural
understanding, and cross-modal alignment. Multimodal QA
datasets, including TVQA [168], further highlight the impor-
tance of integrating dialogue, subtitles, and temporal reasoning
for structured comprehension of complex video content.

Multimodal corpora show that integrating visual, audio, and
textual signals systematically shapes model design, promot-
ing hierarchical, attention-driven, and memory-aware archi-
tectures. This unified analysis across datasets highlights how
multimodal richness, temporal structure, and scale collectively
drive architectural innovations, fulfilling our goal of a dataset-
driven synthesis of video understanding challenges.

IV. Benchmark Insights from Key Video Models
Tables III and IV benchmark representative video models

across recognition, detection, retrieval, localization, and ques-
tion answering. These results show how dataset properties
interact with architectural choices and pretraining strategies.
We organize the discussion into two parts: (i) recognition and
detection benchmarks focusing on spatiotemporal representa-
tion, and (ii) multimodal tasks such as retrieval and question
answering that require video-language alignment.

A. Spatiotemporal Modeling for Recognition and Detection
Short-clip, motion-centric datasets strongly favor architec-

tures that explicitly model local spatiotemporal dynamics (see
Table III). On HMDB51 and UCF101, early Two-Stream
variants and 3D CNNs consistently outperform others, high-
lighting the importance of capturing instantaneous motion
cues. For instance, Two-Stream’16 achieves 93.5% on UCF101
and 69.2% on HMDB51, while RGB-I3D reaches 95.6% and
74.8%, respectively. These results suggest that for datasets with

short, well-constrained clips, exploiting frame-level motion in-
formation through two-stream fusion or early 3D convolutions
remains highly effective. Long-range, compositional datasets
benefit from architectures that model temporal dependencies
across extended sequences. On Something-Something V1/V2
(SSv1/SSv2), sequential approaches such as TSM, TRN, and
TSN show substantial gains over short-term models. For
example, TSM attains 66.0% on SSv2 and 52.6% on SSv1,
while TRN scores 55.5% and 42.0% on the same datasets, re-
spectively. This emphasizes that capturing object interactions,
temporal ordering, and higher-level sequence composition is
critical, as simple motion cues are insufficient for datasets
requiring understanding of temporal context.

Procedural and multi-agent datasets demand attention-based
or transformer architectures capable of relational reasoning
and large-scale context modeling. On AVA v2.2, transformer
and self-supervised models such as MaskFeat and Video-
MAE achieve 38.8-42.6 mAP, whereas traditional 3D CNNs
underperform or are not reported. Epic-Kitchens-100 further
highlights this trend: TSM achieves 38.3% on Action, 67.9%
on Verb, and 49.0% on Noun, while Motionformer reaches
44.5%, 67.0%, and 58.5%, respectively. These results indicate
that procedural or relational tasks benefit from architectures
that integrate long-range temporal dependencies with feature
attention and pretraining on large datasets.

Large-scale, generic action recognition datasets demonstrate
that performance scales with model capacity and pretraining
sophistication. On Kinetics-400/600/700, modern transformers
(Swin, MViT, VideoMAE, InternVideo) consistently outper-
form early 3D CNNs, achieving top-1 accuracies above 80%
and up to 84% (InternVideo and InternVideo2 on K700).
This trend shows that dataset scale, model capacity, and
self-supervised pretraining collectively influence performance,
emphasizing the need for careful model selection when mov-
ing from small, constrained datasets to large, diverse video
collections. Cross-dataset patterns show a clear alignment
between dataset characteristics and architectural design. Early
3D CNNs and two-stream networks excel at short, motion-
sensitive clips, sequential models dominate compositional
and interaction-heavy datasets, and transformer/self-supervised
models achieve the best results on procedural, multi-agent,
or densely annotated benchmarks. This alignment provides a
practical roadmap for model selection: matching architectural
inductive biases to the temporal, relational, and compositional
properties of the target dataset maximizes performance while
guiding design choices for scalability.

B. Multimodal Alignment for Retrieval and Reasoning
Early backbone architectures such as I3D, R(2+1)D, and

SlowFast consistently excel in temporal action localization,
achieving strong mAP on THUMOS’14 (up to 66.8%) and
moderate performance on ActivityNet and HACS (see Ta-
ble IV). These results highlight their ability to capture fine-
grained spatiotemporal motion patterns. However, their lack
of reported performance on retrieval or question answering
benchmarks (e.g., MSR-VTT, MSVD-QA) highlights their
limited capacity for multimodal reasoning or language ground-
ing. This establishes a baseline: temporal modeling alone is
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TABLE III: Top-1 performance of representative video models on action recognition and detection datasets. For each
dataset, the best-performing model variant is reported. Datasets: HMDB51 and UCF101, action classification (top-1 accuracy);
Sports-1M, with Clip Hit@1 (C@1), Video Hit@1 (V@1), and Video Hit@5 (V@5) metrics; AVA v2.1 and v2.2, action
detection (mAP); Diving48, Moments in Time (Moments), Kinetics-400/600/700 (K400/K600/K700), Something-Something
v1/v2 (SSv1/SSv2), and ActivityNet (ANet), top-1 classification accuracy; Charades, action detection (mAP); Epic-Kitchens-
100, top-1 accuracy reported separately for Action, Verb, and Noun. Model abbreviations: 2S indicates Two-Stream, F-ST-
ConvNet indicates Factorized Spatio-Temporal ConvNet, and NL indicates Non-Local. A dash (-) indicates results not reported
for a dataset. Early two-stream and 3D CNNs excel on short clips, sequential models (TSN, TRN, TSM, SlowFast) capture
long-range and compositional actions, and transformer-based models dominate procedural, multi-agent, and relational tasks.

Model HMDB51 UCF101 Sports-1M AVAv2.1 AVAv2.2 Diving48 Moments K400 K600 K700 SSv1 SSv2 EK100 ANet Charades
C@1 V@1 V@5 Action Verb Noun

Slow Fusion [1] - 65.4 41.9 60.9 80.2 - - - - - - - - - - - - - -
Two-stream’14 [38] 59.4 88.0 - - - - - - - - - - - - - - - 71.9 -
Two-stream’16 [184] 69.2 93.5 - - - - - - - - - - - - - - - - -
F-ST-ConvNet [230] 59.1 88.1 - - - - - - - - - - - - - - - - -
Conv Pooling [197] - 88.6 70.8 72.4 90.8 - - - - - - - - - - - - - -
C3D [2] - 90.4 46.1 61.1 85.2 - - - - - - - - - - - - 65.8 10.9
RGB-I3D [24] 74.8 95.6 - - - 14.5 - - 29.5 71.1 71.9 - 45.8 - - - - - 35.5
Flow-I3D [24] 77.3 96.7 - - - - - - - 63.4 - - - - - - - - -
2S I3D [24] 80.9 98.0 - - - 15.6 - - - 74.2 75.7 - - - - - - - -
P3D ResNet [198] - 93.7 47.9 66.4 87.4 - - - - - - - - - - - - 75.1 -
R(2+1)D RGB [199] 74.5 96.8 57.0 73.0 91.5 - - - - 74.3 - - - - - - - - -
R(2+1)D Flow [199] 76.4 95.5 46.4 68.4 88.7 - - - - 68.5 - - - - - - - - -
2S R(2+1)D [199] 78.7 97.3 - 73.3 91.9 - - - - 75.4 - - - - - - - - -
S3D [231] 75.9 96.8 - - - - - - - 77.2 - - 48.2 - - - - - -
X3D [218] - - - - - - 27.4 - - 79.1 81.9 - - - - - - - 47.1
NL RGB-I3D [25] - - - - - - - - - 77.7 - - - - - - - - 37.5
TSN [185] 71.0 94.9 - - - - - - 50.1 - - - 30.0 33.2 60.2 46.0 89.6 - -
TRN [221] - 83.8 - - - - - - 28.3 - - - 42.0 55.5 35.3 65.9 45.4 - 25.2
TSM [232] 73.6 95.9 - - - - - - - 74.3 - - 52.6 66.0 38.3 67.9 49.0 - -
SlowFast [3] - - - - - 27.3 30.7 77.6 - 79.8 81.8 71.0 - 63.1 38.5 65.6 50.0 - 45.2
TVN [233] 75.5 - - - - - - - 30.7 - - - - - - - - - 54.6
MoViNet [234] - - - - - - - - 40.2 81.5 84.8 72.3 - 64.1 47.7 72.2 57.3 - 63.2
ECO [235] 72.4 94.8 - - - - - - - 70.0 - - 49.5 - - - - - -
VTN [236] - - - - - - - - 37.4 79.8 - - - - - - - - -
AssembleNet [237] - - - - - - - - 34.3 - - - - - - - - - 58.6
TimeSformer [28] - - - - - - - 81.0 - 80.7 82.2 - - 62.5 - - - - -
ViViT [27] - - - - - - - - 38.5 84.9 85.8 - - 65.9 44.0 66.4 56.8 - -
MViT [223] - - - - - - 28.7 - - 81.2 83.8 - - 68.7 - - - - 47.7
Motionformer [238] - - - - - - - - - 81.1 82.7 - - 68.1 44.5 67.0 58.5 - -
Swin [239] - - - - - - - - - 84.9 86.1 - - 69.6 - - - - -
MaskFeat [44] - - - - - 37.8 38.8 - - 87.0 88.3 80.4 - 75.0 - - - - -
MViTv2 [240] - - - - - - 33.5 - - 86.1 87.9 79.4 - 73.3 - - - - -
VideoMAE [29] 73.3 96.1 - - - - 39.3 - - 87.4 - - - 75.4 - - - - -
VideoMAE V2 [31] 88.1 99.6 - - - - 42.6 - - 90.0 89.9 - 68.7 77.0 - - - - -
InternVideo [30] 89.3 - - - - - - - - 91.1 91.3 84.0 70.0 77.2 - - - 94.3 -
InternVideo2 [32] 80.7 97.3 - - - - - - 51.2 92.1 91.9 85.9 - 77.5 - - - 95.9 -

insufficient for tasks that require semantic alignment across
video and text. The emergence of video-language pretrained
models marks the next major shift. Architectures such as
CLIP4Clip, Frozen, VIOLET, and ALPRO achieve substantial
gains on retrieval benchmarks, with MSR-VTT R@1 reaching
32.5–42.1%. These gains show that large-scale pretraining on
paired video-text data enables robust cross-modal alignment,
facilitating both retrieval and video question answering. In-
deed, models like VideoCLIP and VIOLET also demonstrate
strong QA performance (e.g., 92.1% on MSVD-QA, 68.9%
on TGIF-QA), showing that semantic transfer extends beyond
simple retrieval. Nevertheless, these models generally report
limited or no performance on temporal localization bench-
marks, suggesting that video-language alignment alone cannot
fully replace specialized temporal reasoning.

The most pronounced performance leap occurs with large-
scale models such as InternVideo and InternVideo2. These
models achieve state-of-the-art retrieval results across multiple
datasets (MSR-VTT: 62.8%, ActivityNet: 74.1%, VATEX:
75.5%) while maintaining strong localization performance
(THUMOS’14 mAP: 72.0%). They also exhibit high accu-
racy on multiple-choice QA (MSR-VTT: 93.4%, LSMDC:

77.3%), highlighting their ability to generalize multimodal
understanding to structured reasoning tasks. These results
demonstrate that scaling both model size and pretraining
diversity enhances not only cross-modal alignment but also
downstream adaptability across datasets of varying complexity
and granularity. Instruction-tuned video-language models such
as Video-ChatGPT, Valley, and Grounding-GPT introduce a
complementary paradigm. By aligning video understanding
with natural language instructions, these models excel in video
QA, achieving top-1 accuracies exceeding 49% on MSR-VTT-
QA and TGIF-QA, despite minimal supervised fine-tuning.
Their performance highlights the potential of instruction tun-
ing to enable flexible, open-ended reasoning, although retrieval
metrics remain largely unreported.

Across datasets, several trends emerge. Short-clip retrieval
datasets like MSR-VTT and MSVD benefit most from large-
scale video-language pretraining, whereas long-range, com-
positional datasets such as ActivityNet and DiDeMo show
the importance of temporal reasoning. QA datasets, including
MSVD-QA and TGIF-QA, require both semantic alignment
and multimodal reasoning, favoring instruction-tuned architec-
tures. Multiple-choice settings further emphasize the benefits
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TABLE IV: Comparison of representative video models across tasks. Dataset abbreviations are as follows: Video retrieval
(MSR=MSR-VTT, MSVD=MSVD, LSMDC=LSMDC, ANet=ActivityNet, DiDeMo=DiDeMo, VATEX=VATEX), Temporal
action localization (TH’14=THUMOS’14, ANet=ActivityNet, HACS=HACS, FineAct=FineAction), Video question answering
(MSRVTT-QA, MSVD-QA, TGIF-QA, ANet-QA), and Multiple-choice (MSR-VTT, LSMDC). Reported metrics: Recall@1
(R@1) for retrieval, average mAP for localization, top-1 accuracy for QA, and zero-shot performance for multiple-choice. Early
backbones excel at localization but have limited reported performance in retrieval and QA; video-language pretrained models
show strong retrieval and QA; instruction-tuned models (Video-ChatGPT, Grounding-GPT, Valley) excel at zero-shot QA.

Model Video retrieval Action localization Video question answering Multiple-choice
MSR MSVD LSMDC ANet DiDeMo VATEX TH’14 ANet HACS FineAct MSRVTT MSVD TGIF ANet MSR LSMDC

I3D [24]+Flow - - - - - - 66.8 35.6 - - - - - - - -
R(2+1)D [199] - - - - - - 55.6 36.6 - - - - - - - -
SlowFast [3] - - - - - - - - 38.7 - - - - - - -
Heterogeneous [241] - - - - - - - - - - 33.0 33.7 53.8 - - -
VideoCLIP [224] 30.9 - - - - - - - - - 92.1 - - - - -
ClipBERT [242] 22.0 - - 21.3 20.4 - - - - - 37.4 - 60.3 - 88.2 -
VIOLET [226] 34.5 - 16.1 - 32.6 - - - - - 43.9 47.9 68.9 - - 82.9
Frozen [172] 32.5 33.7 15.0 28.8 34.6 - - - - - - - - - - -
CLIP4Clip [243] 42.1 46.2 22.6 40.5 43.4 - - - - - - - - - - -
FrozenBiLM [244] - - - - - - - - - - 16.8 32.2 41.0 24.7 - -
ALPRO [227] 33.9 - - - 35.9 - - - - - 42.1 45.9 - - - -
InternVideo [30] 55.2 58.4 34.0 62.2 57.9 71.1 71.6 39.0 41.6 17.6 47.1 55.5 72.2 - 93.4 77.3
VideoMAE V2 [31] - - - - - - 69.6 - - 18.2 - - - - - -
All-in-one [245] 37.3 - - 22.4 32.7 - - - - - 46.8 48.3 67.3 - 91.9 83.9
Video Chat [246] - - - - - - - - - - 45.0 56.3 34.4 26.5 - -
LLaMA Adapter [247] - - - - - - - - - - 43.8 54.9 - 34.2 - -
Video LLaMA [228] - - - - - - - - - - 29.6 51.6 - 12.4 - -
Video-ChatGPT [229] - - - - - - - - - - 49.3 64.9 51.4 35.2 - -
Valley [248] - - - - - - - - - - 50.8 69.2 - 44.9 - -
InternVideo2 [32] 62.8 61.4 46.4 74.1 74.2 75.5 72.0 41.2 43.3 27.7 - - - - - -
Grounding-GPT [249] - - - - - - - - - - 51.6 67.8 - 44.7 - -

of models that can integrate retrieval, localization, and rea-
soning capabilities. Taken together, these patterns illustrate a
clear trajectory: from modality-specific backbones optimized
for temporal cues, through multimodal alignment via video-
language pretraining, to instruction-tuned models capable of
flexible zero-shot reasoning. Future video models will likely
need to merge the temporal precision of early architectures
with the broad multimodal and reasoning capabilities of large-
scale, instruction-aligned systems, advancing toward truly
general-purpose video understanding.

V. A Dataset-Centric Roadmap for Video Understanding
We now provide a prescriptive roadmap showing how

dataset properties shape architectures, guiding model selection
while balancing scalability and deployment.

A. Dataset Limitations and Future Outlook
Dataset limitations. Despite their pivotal role in shaping

model architectures, existing datasets remain constrained by
structural limitations that directly influence what models learn
and how they generalize. A first challenge is dataset bias.
Many benchmarks reflect narrow cultural or environmental
contexts, e.g., sports, kitchens, or scripted movies, leading
to strong priors that models can exploit without acquiring
robust spatiotemporal reasoning skills. Architectures trained
on such datasets may achieve high benchmark accuracy yet
falter in real-world deployments, where actions, objects, and
environments differ markedly from the training distribution.
Bias and imbalance in class coverage further skew learning
dynamics, amplifying context-specific shortcuts rather than
transferable representations. A second limitation lies in anno-
tation cost and granularity. Fine-grained temporal labels, hier-
archical task decompositions, and multimodal alignments are

expensive and time-consuming to obtain. Consequently, many
datasets provide only sparse or weak supervision, with lim-
ited temporal density or noisy boundaries. These constraints
have architectural consequences: models trained under such
supervision often overfit to annotated segments while ignoring
unlabelled structure, motivating the rise of weakly supervised,
self-supervised, and semi-automatic approaches that attempt
to compensate for annotation sparsity. Third, many datasets
lack ecological validity. Curated short clips and trimmed action
boundaries capture isolated moments rather than continuous,
overlapping, and ambiguous workflows that typify everyday
activity. As a result, architectures optimized for such curated
data, such as clip-based 3D CNNs or trimmed-sequence trans-
formers, struggle when confronted with egocentric videos,
multi-agent dynamics, or long-horizon reasoning tasks. The
gap between benchmark data and real-world complexity has
fueled interest in architectures that incorporate memory, rela-
tional reasoning, causal inference, and multimodal grounding
to cope with unconstrained environments. Finally, evalua-
tion remains fragmented across datasets, with heterogeneous
metrics and inconsistent protocols that make it difficult to
assess generalization (Tables III and IV). Models are often
fine-tuned to maximize benchmark-specific accuracy or mean
average precision, rather than being evaluated for broader
capabilities such as compositional reasoning, causal inference,
or robustness to distributional shift. This fragmentation not
only obscures comparative progress but also shapes archi-
tectural incentives, leading to models tuned for leaderboard
performance rather than general-purpose understanding.

Future outlook. These limitations point directly to the
requirements of next-generation datasets and models. Future
benchmarks should move beyond static, domain-specific cor-
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pora to embrace diversity, ecological validity, and scalability.
Diversity involves curating datasets that capture a broad range
of cultures, environments, and activity types, helping to reduce
biases that limit generalization. Ecological validity requires
capturing continuous, untrimmed, multimodal, and multi-
agent activities, enabling models to reason over overlapping
workflows and dynamic social contexts. Scalability demands
annotation strategies that combine automated labeling, crowd-
sourcing, and self-supervised alignment, ensuring that datasets
can grow without prohibitive human cost. Crucially, future
datasets should be explicitly designed to support not only
recognition and localization but also higher-level reasoning
tasks such as forecasting, causal analysis, and interactive
decision-making. Architectures should co-evolve to meet these
demands. Long-horizon reasoning will require models with
structured memory, hierarchical temporal abstractions, and
recurrent attention mechanisms capable of spanning minutes
or even hours of activity. Relational and causal modeling
will benefit from graph-based and neuro-symbolic hybrids
that can disentangle inter-agent dependencies and infer cause-
effect relationships. Multimodal grounding will necessitate
foundation models that seamlessly integrate visual, auditory,
textual, and sensor streams, with mechanisms for balancing
modality dominance and coping with misalignment. Moreover,
continual and adaptive learning will become essential as
datasets increasingly reflect dynamic, open-world conditions
where models should adapt to new tasks, domains, and modal-
ities without catastrophic forgetting.

Alongside dataset and architectural innovation, benchmark-
ing practices should also evolve. Standardized cross-dataset
protocols can provide a measure of true generalization, while
new evaluation metrics should capture dimensions such as
compositional generalization, reasoning faithfulness, robust-
ness under noise, and computational efficiency. Open bench-
marks that test causal inference, multi-step prediction, and
cross-modal reasoning will better reflect the capabilities de-
manded by real-world video understanding systems.

Taken together, these findings highlight the mutual relation-
ship between datasets and architectures: current benchmark
limitations expose model blind spots, while future model
requirements drive the need for more representative, scal-
able, and challenging datasets. Bridging this gap will require
community-wide collaboration in dataset curation, annotation,
benchmarking, and model design. If pursued systematically,
this agenda has the potential to transform video understanding
from narrow task performance toward general-purpose, robust,
and socially responsible systems, closing the loop between
data, inductive bias, and architectural evolution.

B. Datasets as Engines of Architectural Innovation
Datasets are not passive benchmarks; they are the princi-

pal structural force shaping model design. As summarized
in Table II and reflected in performance trends in Tables
III and IV, every major architectural transition in video
understanding has been catalyzed by properties encoded in
the data: short, trimmed motion corpora favored two-stream
CNNs and early 3D ConvNets; long-range sequential datasets

demanded temporal aggregation and memory; and multimodal,
text-paired corpora precipitated cross-modal transformers and
video-language pretraining. In this sense, datasets operate as
inductive-bias generators that determine which invariances,
e.g., temporal, relational, and semantic, models should inter-
nalize to succeed.

Motion complexity sets the limits of generalization. Coarse,
high-amplitude datasets rewarded architectures that capture
instantaneous motion (e.g., optical-flow streams and shallow
3D filters), but those same inductive biases often fail in clut-
tered or low-amplitude regimes. FineGym, Diving48, and AVA
illustrate the opposite pressures: fine-grained micro-motions,
multi-agent interactions, and sparse cues force models toward
multi-scale temporal hierarchies, pose/part reasoning, and at-
tention mechanisms that can isolate salient sub-trajectories.
The practical implication is clear: training exclusively on
coarse-action datasets leads to fragile transfer performance.
Motion granularity should be present in the data if we expect
robustness in nuanced real-world settings. Compositional and
hierarchical structure unlocks procedural reasoning. Instruc-
tional datasets such as Breakfast, YouCook2, COIN, and large
weakly aligned corpora like HowTo100M show that activities
are not atomic labels but sequences of sub-actions arranged
taxonomically and contextually. Exposure to such structure
allows models to learn reusable primitives and combine them
zero-shot into unseen activities, an ability crucial for robotics,
assistive AI, and instructional video analysis. Table II makes
this visible in the Step/Hier annotation columns: when the
dataset records relations among actions rather than only their
names, models learn mechanisms that transfer.

Temporal richness and multimodal alignment provide the
foundation for deployable systems. Long-horizon corpora
and egocentric datasets (e.g., Charades, EPIC-KITCHENS,
Ego4D) compel models to track extended dependencies, han-
dle overlapping actions, and disentangle ego-motion. When
videos are paired with language, audio, and narration (e.g.,
ActivityNet Captions, HowTo100M), models are pressured to
ground perception in text and sound, enabling cross-modal re-
trieval and zero-shot generalization. The performance patterns
in Table IV mirror this: video-language pretraining and in-
struction tuning lift retrieval and QA substantially, while pure
visual pretraining alone is insufficient for semantic grounding.

These observations also expose concrete dataset gaps. Web-
scale video-text corpora deliver breadth, yet their captions are
noisy, weakly aligned in time, and culturally/language biased;
fine-grained manipulation and low-amplitude motions are un-
derrepresented; spatio-temporal boxes remain sparse outside
a handful of benchmarks; and true long-horizon, multi-agent,
multimodal datasets with dense alignment are rare. Cross-view
and ego-exo bridging are inconsistently available, and compo-
sitional generalization is seldom stress-tested with principled
splits. Addressing these gaps requires treating dataset design
as a strategic lever rather than a scaling exercise. Simply
enlarging class vocabularies or clip counts will not yield
general video intelligence. The decisive ingredient is structure:
motion granularity, procedural and hierarchical annotations,
temporal continuity across minutes or hours, precise audio/text
alignment at sub-second resolution, and evaluation splits that
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diagnose composition and transfer. Datasets designed with
these properties have historically driven the architectural in-
novations that underpin the field today; future corpora should
be crafted to sustain this virtuous cycle.

C. Open Challenges and Future Directions

The patterns observed in Tables III and IV illustrate a clear
principle: datasets generate invariance pressures, which archi-
tectures evolve to accommodate. Trimmed, homogeneous clips
permitted two-stream and 3D CNNs to dominate short-clip
recognition; longer, untrimmed activities exposed their rigidity
and motivated temporal convolutions and recurrent aggrega-
tion; long-horizon reasoning elevated transformers with scal-
able attention; rich human-object and multi-agent interactions
stimulated relational encoders and graph-augmented models;
and, finally, multimodal corpora forced fusion modules and
large-scale video-language pretraining. The prescription that
follows is not a linear “replace the old with the new”, but a
matching of inductive bias to dataset structure, together with
a plan to close the remaining gaps.

For short and relatively homogeneous data, compact 3D
CNNs and hybrid CNN-transformer encoders remain efficient
and competitive, particularly when deployment constraints
prioritize throughput and latency. As temporal span grows
and events occur concurrently, attention mechanisms with
memory compression, segment-level pooling, and hierarchical
temporal pyramids become essential to preserve long-range
context without sacrificing resolution at action boundaries.
Where multi-agent interactions and human-object relations are
central, relational modules and graph-enhanced transformers
provide the inductive bias to track entities, roles, and contact
dynamics over time. When audio and language are present,
alignment losses and contrastive or generative video-language
pretraining become the standard framework for retrieval, cap-
tioning, and question answering, as reflected in the substantial
gains of CLIP-style and instruction-tuned models.

However, two system-level gaps remain. The first is
temporal-semantic unification: models that achieve precise
temporal localization often lack open-vocabulary semantic
understanding, whereas models with strong semantic capabil-
ities (e.g., retrieval or QA) perform poorly at boundary-level
localization. A promising direction is to couple dense tem-
poral detectors with token-level audio-text grounding, sharing
representations across localization and language understanding
heads. The second is long-horizon compositional reasoning:
current instruction-tuned systems excel at zero-shot QA but
degrade on extended, multi-step procedures. Here, retrieval-
augmented video understanding, indexing events and steps
into a persistent memory and querying them with language,
offers a practical path forward, especially when paired with
datasets that provide chaptering, steps, and cross-modal times-
tamps. Progress also depends on evaluation that measures what
matters. Alongside top-1 and R@1, reporting should empha-
size temporal mAP across IoU thresholds for localization,
moment retrieval under compositional splits, QA accuracy
under counterfactual and long-horizon subsets, calibration
(e.g., ECE/Brier) for safety-critical use, and compute/latency

metrics for deployment. Cross-dataset testing, ego to exo, lab
to in-the-wild, language and culture shifts, should become a
first-class protocol rather than an afterthought. These practices
are directly tied to the contributions: we implement a dataset-
centric perspective, relate structural properties to observed
performance trends across recognition, localization, retrieval,
and QA, and convert this synthesis into concrete guidance for
selecting and designing models under real-world constraints.

The roadmap is therefore dual. On the modeling side, pursue
architectures that integrate the temporal precision of CNNs, the
hierarchical composition needed for procedures, the scalability
of transformers for long horizons, and the grounding provided
by multimodal pretraining and instruction tuning. On the
data side, build the corpora that will pressure such models
to emerge: long-form, multi-agent, multimodal datasets with
sub-second alignment; annotations that expose steps, roles,
and relations; splits that test compositional generalization
and domain transfer; and curated hard negatives that probe
fine-grained motion and language disambiguation. If dataset
and model co-evolve along these lines, the field can move
beyond recognition of isolated clips toward robust, general, and
deployable video understanding, precisely the dataset-driven
vision advanced by this survey.

VI. Conclusion
Video understanding has evolved from short-clip recogni-

tion to a foundation for multimodal, relational, and long-
horizon reasoning. In this survey, we adopt a dataset-driven
perspective, showing how structural properties have shaped
architectural evolution. We show clear patterns: 3D CNNs
and two-stream networks excel on short, motion-focused clips;
sequential and transformer models thrive on compositional
and procedural tasks; and large-scale, instruction-tuned video-
language models succeed when semantic grounding and cross-
modal reasoning are required. Looking forward, general-
purpose video understanding will arise from the co-evolution
of models and datasets: architectures should integrate temporal
precision, hierarchical reasoning, and multimodal grounding,
while datasets should expose fine-grained motions, procedural
hierarchies, multi-agent interactions, and dense cross-modal
alignment. By emphasizing structure over scale, the field
can move beyond isolated recognition toward robust, context-
aware, and deployable video intelligence, with datasets as the
central drivers of progress.
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