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Abstract Video sequences exhibit significant nuisance
variations (undesired effects) of speed of actions, tempo-
ral locations, and subjects’ poses, leading to temporal-
viewpoint misalignment when comparing two sets of frames
or evaluating the similarity of two sequences. Thus, we
propose Joint tEmporal and cAmera viewpoiNt alIgnmEnt
(JEANIE) for sequence pairs. In particular, we focus on 3D
skeleton sequences whose camera and subjects’ poses can be
easily manipulated in 3D. We evaluate JEANIE on skeletal
Few-shot Action Recognition (FSAR), where matching well
temporal blocks (temporal chunks that make up a sequence)
of support-query sequence pairs (by factoring out nuisance
variations) is essential due to limited samples of novel
classes. Given a query sequence, we create its several views
by simulating several camera locations. For a support se-
quence, we match it with view-simulated query sequences,
as in the popular Dynamic Time Warping (DTW). Specif-
ically, each support temporal block can be matched to the
query temporal block with the same or adjacent (next) tem-
poral index, and adjacent camera views to achieve joint lo-
cal temporal-viewpoint warping. JEANIE selects the small-
est distance among matching paths with different temporal-
viewpoint warping patterns, an advantage over DTW which
only performs temporal alignment. We also propose an
unsupervised FSAR akin to clustering of sequences with
JEANIE as a distance measure. JEANIE achieves state-of-
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the-art results on NTU-60, NTU-120, Kinetics-skeleton and
UWA3D Multiview Activity II on supervised and unsuper-
vised FSAR, and their meta-learning inspired fusion.

1 Introduction

Action recognition is a key topic in computer vision,
with applications in video surveillance [105, 109, 120],
human-computer interaction, sport analysis and robotics.
Many pipelines [99, 24, 23, 9, 50, 61, 108, 49, 114, 117,
106, 83, 145, 120, 58] perform (action) classification given
a large amount of labeled training data. However, manually
labeling videos for 3D skeleton sequences is laborious, and
such pipelines need to be retrained or finetuned for new class
concepts. Popular action recognition networks such as the
two-stream neural network [24, 23, 124] and 3D Convolu-
tional Neural Network (3D CNN) [99, 9] aggregate frame-
wise and temporal block representations, respectively. How-
ever, such networks are trained on large-scale datasets such
as Kinetics [9, 116, 110, 118] under a fixed set of training
classes.

Thus, there exists a growing interest in devising effec-
tive Few-shot Learning (FSL) models for action recognition,
termed Few-shot Action Recognition (FSAR), that rapidly
adapt to novel classes given few training samples [77, 129,
31, 19, 138, 7, 112]. FSAR models are scarce due to the
volumetric nature of videos and large intra-class variations.

In contrast, FSL for image recognition has been widely
studied [76, 55, 25, 4, 22, 53] including contemporary CNN-
based FSL methods [44, 103, 91, 26, 95, 135] which use
meta-learning, prototype-based learning or feature represen-
tation learning. Just in 2020–2024, many FSL methods [32,
18, 121, 60, 70, 21, 29, 56, 20, 7, 96, 51, 137, 155, 68, 157,
39, 88, 136, 143, 146, 144, 69] have been dedicated to im-
age classification or detection. In contrast, in this paper, we
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Fig. 1: Skeletal FSAR (simplified overview) takes episodes of query and support sequences,
splits them into temporal blocks (X1, ...,Xτ and X′

1, ...,X
′
τ ), passes them to the Encoding

Network to obtain features Ψ = [ψ1, ...,ψτ ] and Ψ′ = [ψ′
1, ...,ψ

′
τ ′ ], and the Comparator

which typically uses some distance measure d(·, ·), regularization Ω and the similarity clas-
sifier ℓ(·, ·).

Fig. 2: One may use (top)
stereo projections to simu-
late different camera views
or simply use (bottom) Euler
angles to rotate 3D scene.

aim at advancing few-shot action recognition of articulated
set of connected 3D body joints, simply put, skeletal FSAR.

With the exception of very recent models [63, 62, 75, 74,
71, 112, 153], FSAR approaches that learn from skeleton-
based 3D body joints are scarce. The above situation pre-
vails despite action recognition from articulated sets of con-
nected body joints, expressed as 3D coordinates, does offer
a number of advantages over videos such as (i) the lack of
the background clutter, (ii) the volume of data being several
orders of magnitude smaller, and (iii) the 3D geometric ma-
nipulations of skeletal sequences being algorithm-friendly.

Video sequences may be captured under varying cam-
era poses where subjects may follow different trajectories
resulting in subjects’ pose variations. Variations of action
speed, location, and motion dynamics are also common. Yet,
FSAR has to learn and infer similarity between support-
query sequence pairs under the limited number of samples
of novel classes. Thus, a good measure of similarity be-
tween support-query sequence pairs has to factor out the
above variations. To this end, we propose a FSAR model that
learns on skeleton-based 3D body joints via Joint tEmporal
and cAmera viewpoiNt alIgnmEnt (JEANIE). We focus on
3D skeleton sequences as camera/subject’s pose can be eas-
ily altered in 3D by the use of projective camera geometry.

JEANIE achieves good matching of queries with support
sequences by simultaneously modeling the optimal (i) tem-
poral and (ii) viewpoint alignments. To this end, we build
on soft-DTW [16], a differentiable variant of Dynamic Time
Warping (DTW) [15] (Fig. 5 is an overview how DTW dif-
fers from the Euclidean distance). Given a query sequence,
we create its several views by simulating several camera lo-
cations. For a support sequence, we can match it with view-
simulated query sequences as in DTW. Specifically, with
the goal of computing optimal distance, each support tem-

poral block1 can be matched to the query temporal block
with the same temporal block index or neighbouring tempo-
ral block index to perform a local time warping step. How-
ever, we simultaneously also let each support temporal block
match across adjacent camera views of the query temporal
block to achieve camera viewpoint warping. Multiple align-
ment patterns of query and support blocks result in multi-
ple paths across temporal and viewpoint modes. Thus, each
path represents a matching plan describing between which
support-query block pairs the feature distances are evalu-
ated and aggregated. By the use of soft-minimum, the path
with the minimum aggregated distance is selected as the out-
put of JEANIE. Thus, while DTW provides optimal tempo-
ral alignment of support-query sequence pairs, JEANIE si-
multaneously provides the optimal joint temporal-viewpoint
alignment.

To facilitate the viewpoint alignment in JEANIE, we use
easy 3D geometric operations. Specifically, we obtain skele-
tons under several viewpoints by rotating skeletons (zero-
centered by hip) via Euler angles [1], or generating skeleton
locations given simulated camera positions, according to the
algebra of stereo projections [2].

We note that view-adaptive models for action recogni-
tion do exist. View Adaptive Recurrent Neural Network [139,
140] is a classification model equipped with a view-adaptive
subnetwork that contains the rotation/translation switches
within its RNN backbone and the main LSTM-based net-
work. Temporal Segment Network [119] models long-range
temporal structures with a new segment-based sampling and
aggregation module. However, such pipelines require a large
number of training samples with varying viewpoints and
temporal shifts to learn a robust model. Their limitations be-
come evident when a network trained under a fixed set of

1In fact, we bundle several neighboring frames into a temporal
block, and perform alignment between support-query sequence pairs
by temporally aligning temporal blocks rather than individual frames.
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Fig. 3: Our 3D skeleton-based FSAR with JEANIE. Frames from a query sequence and a support sequence are split into
short-term temporal blocks X1, ...,Xτ and X′

1, ...,X
′
τ ′ of length M given stride S. Subsequently, we generate (i) multiple

rotations by (∆θx, ∆θy) of each query skeleton by either Euler angles (baseline approach) or (ii) simulated camera views
(gray cameras) by camera shifts (∆θaz, ∆θalt) w.r.t. the assumed average camera location (black camera). We pass all
skeletons via Encoding Network (with an optional transformer) to obtain feature tensors Ψ and Ψ ′, which are directed to
JEANIE. We note that the temporal-viewpoint alignment takes place in 4D space (we show a 3D case with three views:
−30◦, 0◦, 30◦). Temporally-wise, JEANIE starts from the same t=(1, 1) and finishes at t=(τ, τ ′) (as in DTW). Viewpoint-
wise, JEANIE starts from every possible camera shift ∆θ ∈ {−30◦, 0◦, 30◦} (we do not know the true correct pose) and
finishes at one of possible camera shifts. At each step, the path may move by no more than (±∆θaz,±∆θalt) to prevent
erroneous alignments. Finally, SoftMin picks up the smallest distance.

action classes has to be adapted to samples of novel classes.
Our JEANIE does not suffer from such a limitation.

Figure 1 is a simplified overview of our pipeline which
can serve as a template for baseline FSAR. It shows that
our pipeline consists of an MLP which takes neighboring
frames forming a temporal block. Each sequence consists of
several such temporal blocks. However, as in Figure 2, we
sample desired Euler rotations or simulated camera view-
points, generate multiple skeleton views, and pass them to
the MLP to get block-wise feature maps fed into a Graph
Neural Network (GNN) [42, 94, 127, 43, 125, 154, 150,
149]. We mainly use a linear S2GC [154, 158, 156, 115],
with an optional transformer [17], and an FC layer to obtain
block feature vectors passed to JEANIE whose output dis-
tance measurements flow into our similarity classifier. Fig-
ure 3 is a detailed overview of our supervised FSAR pipeline.

Note that JEANIE can be thought of as a kernel in Re-
producing Kernel Hilbert Spaces (RKHS) [90] based on Op-
timal Transport [102] with a specific temporal-viewpoint trans-
portation plan. As kernels capture the similarity of sample
pairs instead of modeling class labels, they are a natural
choice for FSL and FSAR problems.

In this paper, we extend our supervised FSAR model
[111] by introducing an unsupervised FSAR model, and a
fusion of both supervised and unsupervised models. Our ra-
tionale for an unsupervised FSAR extension is to demon-
strate that the invariance properties of JEANIE (dealing with
temporal and viewpoint variations) help naturally match se-
quences of the same class without the use of additional knowl-
edge (class labels). Such a setting demonstrates that JEANIE
is able to limit intra-class variations (temporal and viewpoint
variations) facilitating unsupervised matching of sequences.

For unsupervised FSAR, JEANIE is used as a distance
measure in the feature reconstruction term of dictionary learn-
ing and feature coding steps. Features of the temporal blocks
are projected into such a dictionary space and the projection
codes representing sequences are used for similarity mea-
sure between support-query sequences. This idea is similar
to clustering training sequences into k-means clusters [14]
to form a dictionary. Then the assignments of test query se-
quences to such a dictionary can reveal their class labels
based on labeled test support sequence falling into the same
cluster. However, even with JEANIE used as a distance mea-
sure, one-hot assignments resulting from k-means are sub-
optimal. Thus, we investigate more recent soft assignment
[6, 27, 46, 64] and sparse coding approaches [54, 132].

Finally, we also introduce a simple fusion of supervised
and unsupervised FSAR by alignment of supervised and un-
supervised FSAR features or by MAML-inspired [26] fu-
sion of unsupervised and supervised FSAR losses in the so-
called inner and outer loop, respectively.

Below are our contributions:

i. We propose JEANIE that performs the joint alignment
of temporal blocks and simulated camera viewpoints of
3D skeletons between support-query sequences to select
the optimal alignment path which realizes joint tempo-
ral (time) and viewpoint warping. We evaluate JEANIE
on skeletal few-shot action recognition, where matching
correctly support and query sequence pairs (by factor-
ing out nuisance variations) is essential due to limited
samples representing novel classes.

ii. To simulate different camera locations for 3D skeleton
sequences, we consider rotating them (1) by Euler an-
gles within a specified range along axes, or (2) towards
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the simulated camera locations based on the algebra of
stereo projection.

iii. We propose unsupervised FSAR where JEANIE is used
as a distance measure in the feature reconstruction term
of dictionary learning and coding steps (we investigate
several such coders). We use projection codes to repre-
sent sequences. Moreover, we also introduce an effec-
tive fusion of both supervised and unsupervised FSAR
models by unsupervised and supervised feature align-
ment term or MAML-inspired fusion of unsupervised
and supervised FSAR losses.

iv. As minor contributions, we investigate different GNN
backbones (combined with an optional transformer), as
well as the optimal temporal size and stride for tempo-
ral blocks encoded by a simple 3-layer MLP unit be-
fore forwarding them to GNN. We also propose a sim-
ple similarity-based loss encouraging the alignment of
within-class sequences and preventing the alignment of
between-class sequences.

We achieve state-of-the-art results on few-shot action
recognition on large-scale NTU-60 [86], NTU-120 [62], Kine-
tics-skeleton [130], and UWA3D Multiview Activity II [84].

2 Related Works

Below, we describe 3D skeleton-based AR, FSAR ap-
proaches, and Graph Neural Networks.

Action recognition (3D skeletons). 3D skeleton-based ac-
tion recognition pipelines often use GCNs [42], e.g., spatio-
temporal GCN (ST-GCN) [130], Attention enhanced Graph
Convolutional LSTM network (AGC-LSTM) [89], Actional-
Structural GCN (AS-GCN) [57], Dynamic Directed GCN
(DDGCN) [52], Decoupling GCN with DropGraph mod-
ule [12], Shift-GCN [13], Semantics-Guided Neural Net-
works (SGN) [141], AdaSGN [87], Context Aware GCN
(CA-GCN) [147], Channel-wise Topology Refinement Graph
Convolution Network (CTR-GCN) [11], Efficient GCN [92]
and Disentangling and Unifying Graph Convolutions [67].
As ST-GCN applies convolution along links between body
joints, structurally distant joints, which may cover key pat-
terns of actions, are largely ignored. While GCN can be ap-
plied to a fully-connected graph to capture complex interac-
tions of body joints, groups of nodes across space/time can
be captured with tensors [45, 49], semi-dynamic hypergraph
neural networks [65], hypergraph GNN [35], angular fea-
tures [82], Higher-order Transformer (HoT) [41] and Multi-
order Multi-mode Transformer (3Mformer) [113]. PoF2I [38]
transforms pose features into pixels. Recently, Koopman pool-
ing [122], an auxiliary feature refinement head [152], a Spatial-
Temporal Mesh Transformer (STMT) [160], Strengthening
Skeletal Recognizers [81], and a Skeleton Cloud Coloriza-
tion [133] have been proposed for 3D skeleton-based AR.

However, such models rely on large-scale datasets to
train large numbers of parameters, and cannot be adapted
with ease to novel class concepts whereas FSAR can.

FSAR (videos). Approaches [77, 31, 129] use a genera-
tive model, graph matching on 3D coordinates and dilated
networks, respectively. Approach [159] uses a compound
memory network. ProtoGAN [19] generates action proto-
types. Recent FSAR model [138] uses permutation-invariant
attention and second-order aggregation of temporal video
blocks, whereas approach [7] proposes a modified temporal
alignment for query-support pairs via DTW. Recent video
FSAR models include a mixed-supervised hierarchical con-
trastive learning (HCL) [151], Compound Prototype Match-
ing [37], Spatio-temporal Relation Modeling [98], motion-
augmented long-short contrastive learning (MoLo) [123] and
Active Multimodal Few-shot Action Recognition (AMFAR)
framework [126].

FSAR (3D skeletons). Few FSAR models use 3D skele-
tons [63, 62, 75, 74, 134]. Global Context-Aware Attention
LSTM [63] focuses on informative joints. Action-Part Se-
mantic Relevance-aware (APSR) model [62] uses semantic
relevance among each body part and action class at the dis-
tributed word embedding level. Signal Level Deep Metric
Learning (DML) [75] and Skeleton-DML [74] encode sig-
nals as images, extract CNN features and use multi-similarity
miner loss. New skeletal FSAR includes Disentangled and
Adaptive Spatial-Temporal Matching (DASTM) [71], Adap-
tive Local-Component-Aware Graph Convolutional Network
(ALCA-GCN) [153] and uncertainty-DTW [112].

In contrast, we use temporal blocks of skeleton sequences
encoded by GNNs under multiple simulated camera view-
points to jointly apply temporal and viewpoint alignment of
query-support sequences to factor out nuisance variability.

Graph Neural Networks. GNNs modified to act on the spe-
cific structure of 3D skeletal data are very popular in action
recognition, as detailed in “Action recognition (3D skele-
tons)” at the beginning of Section 2. In this paper, we lever-
age standard GNNs due to their good ability to represent
graph-structured data. GCN [42] applies graph convolution
in the spectral domain, and enjoys the depth-efficiency when
stacking multiple layers due to non-linearities. However,
depth-efficiency extends the runtime due to backpropagation
through consecutive layers. In contrast, a very recent family
of so-called spectral filters do not require depth-efficiency
but apply filters based on heat diffusion on graph adjacency
matrix. As a result, these are fast linear models as learnable
weights act on filtered node representations. Unlike general
GNNs, SGC [127], APPNP [43] and S2GC [154] are three
such linear models which we investigate for the backbone,
followed by an optional transformer, and an FC layer.

Transformers in action recognition. Transformers have be-
come popular in action recognition [80, 142, 148, 28, 79].
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Fig. 4: (top) In viewpoint-invariant
learning, the distance between query
features Ψ and support features Ψ ′

has to be computed. The blue arrow
indicates that trajectories of both ac-
tions need alignment. (bottom) In real
life, subject’s 3D body joints deviate
from one ideal trajectory, and so ad-
vanced viewpoint alignment strategy
is needed.

query

supp.

query
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Fig. 5: Euclidean dist. vs. DTW. (top) Fea-
ture vectors ψt and ψ′

t of query and support
frames (or temp. blocks) are matched along
time t: dEuclid(Ψ,Ψ′) =

∑
t d

2(ψt,ψ
′
t).

(bottom) For DTW, a path with mini-
mum aggregated distance is selected as
dDTW (Ψ,Ψ′) =

∑
t d

2(ψm(t),ψ
′
n(t)), and

m(t) and n(t) parameterize query and sup-
port indexes. One is permitted steps ↓, ↘, →
in the graph. We expect dDTW ≤ dEuclid.

-20
0
20

1

Fig. 6: JEANIE (1-max shift). We
loop over all points. At (t, t′, n)

(green point) we add its base distance
to the minimum of accumulated dis-
tances at (t, t′−1, n−1), (t, t′−1, n),
(t, t′−1, n+1) (orange plane), (t−
1, t′−1, n−1), (t−1, t′−1, n), (t−1, t′−
1, n+1) (red plane) and (t−1, t′, n−1),
(t−1, t′, n), (t−1, t′, n+1) (blue plane).

Vision Transformer (ViT) [17] is the first transformer model
for image classification but transformers find application even
in recent pre-training models [34]. The success of transform-
ers relies on their ability to establish exhaustive attention
among visual tokens. Recent transformer-based AR models
include Uncertainty-Guided Probabilistic Transformer (UGPT)
[30], Recurrent Vision Transformer (RViT) [131], Spatio-
TemporAl cRoss (STAR)-transformer [3], DirecFormer [100],
Spatial-Temporal Mesh Transformer (STMT) [160], Semi-
Supervised Video Transformer (SVFormer) [128] and Multi-
order Multi-mode Transformer (3Mformer) [123].

In this work, we apply a simple optional transformer
block with few layers following GNN to capture better block-
level dependencies of 3D human body joints.

Multi-view action recognition. Multi-modal sensors enable
multi-view action recognition [108, 139]. A Generative Multi-
View Action Recognition framework [107] integrates RGB
and depth data by View Correlation Discovery Network while
Synthetic Humans [101] generates synthetic training data to
improve generalization to unseen viewpoints. Some works
use multiple views of the subject [86, 62, 140, 107] to over-
come the viewpoint variations for action recognition. Re-
cently, a supervised contrastive learning framework [85] for
multi-view was introduced.

In contrast, our JEANIE performs jointly the temporal
and simulated viewpoint alignment in an end-to-end FSAR
setting. This is a novel paradigm based on improving the no-
tion of similarity between sequences of support-query pair
rather than learning class concepts.

3 Approach

To learn similarity and dissimilarity between pairs of se-
quences of 3D body joints representing query and support

samples from episodes, our goal is to find a joint viewpoint-
temporal alignment of query and support, and minimize or
maximize the matching distance dJEANIE (end-to-end setting)
for same or different support-query labels, respectively. Fig. 4
(top) shows that sometimes matching of query and support
may be as easy as rotating one trajectory onto another, in or-
der to achieve viewpoint invariance. A viewpoint invariant
distance [33] can be defined as:

dinv(Ψ ,Ψ ′)= Inf
γ,γ′∈T

d
(
γ(Ψ), γ′(Ψ ′)

)
, (1)

where T is a set of transformations required to achieve a
viewpoint invariance, d(·, ·) is some base distance, e.g., the
Euclidean distance, and Ψ and Ψ ′ are features describing
query and support pair of sequences. Typically, T may in-
clude 3D rotations to rotate one trajectory onto the other.
However, a global viewpoint alignment of two sequences is
suboptimal. Trajectories are unlikely to be straight 2D lines
in the 3D space so one may not be able to rotate the query
trajectory to align with the support trajectory. Fig. 4 (bot-
tom) shows that the subjects’ poses locally follow compli-
cated non-linear paths.

Thus, we propose JEANIE that aligns and warps query
/ support sequences based on the feature similarity. One can
think of JEANIE as performing Eq. (1) with T containing all
possible combinations of local time-warping augmentations
of sequences and camera pose augmentations for each frame
(or temporal block). JEANIE unit in Fig. 3 realizes such
a strategy. Figure 6 (discussed later in the text) shows one
step of the temporal-viewpoint computations of JEANIE in
search for optimal temporal-viewpoint alignment path be-
tween query and support sequences. Soft-minimum across
all such possible alignment paths can be equivalently writ-
ten as an infimum over a set of specific transformations in
Eq. (1).
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Viewpoints

-45o

-30o

0o

30o

45o Temporal

4.94
4.64
4.15
4.08
4.21

(a) soft-DTW (applied per view)

Viewpoints

-45o

-30o

0o

30o

45o Temporal

dFVM = 2.53

(b) FVM

Viewpoints

-45o

-30o

0o

30o

45o Temporal

4.38
4.45
4.07
3.69
3.99

(c) JEANIE (1-max shift)

Fig. 7: A comparison of paths in 3D for soft-DTW, Free Viewpoint Matching (FVM) and our JEANIE. For a given query
skeleton sequence (green color), we choose viewing angles between −45◦ and 45◦ for the camera viewpoint simulation.
The support skeleton sequence is shown in black color. (a) soft-DTW finds each individual alignment per viewpoint fixed
throughout alignment: dshortest=4.08. Notice that each path “stays” within the same view–it does not cross into other views.
(b) FVM is a greedy matching algorithm that in each time step seeks the best alignment pose from all viewpoints which
leads to unrealistic zigzag path (person cannot jump from front to back view suddenly): dFVM =2.53. (c) Our JEANIE (1-
max shift) is able to find smooth joint viewpoint-temporal alignment between support and query sequences. We show each
optimal path for each possible starting position: dJEANIE=3.69. While dFVM=2.53 for FVM is overoptimistic, dshortest=4.08

for fixed-view matching is too pessimistic, whereas JEANIE strikes the right matching balance with dJEANIE=3.69.

Below, we detail our pipeline, and explain the proposed
JEANIE, Encoding Network (EN), feature coding and dic-
tionary learning, and our loss function. Firstly, we present
our notations.
Notations. IK stands for the index set {1, 2, ...,K}. Con-
catenation of αi is denoted by [αi]i∈II

, whereas X:,i means
we extract/access column i of matrixD. Calligraphic math-
cal fonts denote tensors (e.g., D), capitalized bold symbols
are matrices (e.g., D), lowercase bold symbols are vectors
(e.g., ψ), and regular fonts denote scalars.

Prerequisites. Below we refer to prerequisites used in the
subsequent chapters. Appendix A explains how Euler an-
gles and stereo projections are used in simulating different
skeleton viewpoints. Appendix B explains several GNN ap-
proaches that we use in our Encoding Network. Appendix
C explains several feature coding and dictionary learning
strategies which we use for unsupervised FSAR.

3.1 Encoding Network (EN)

We start by generating K×K ′ Euler rotations or K×K ′

simulated camera views (moved gradually from the esti-
mated camera location) of query skeletons. Our EN contains
a simple 3-layer MLP unit (FC, ReLU, FC, ReLU, Dropout,
FC), GNN, optional Transformer [17] and FC. The MLP
unit takes M neighboring frames, each with J 3D skele-
ton body joints, forming one temporal block X∈R3×J×M ,
where 3 indicates 3D Cartesian coordinates. In total, de-
pending on stride S, we obtain some τ temporal blocks

which capture the short temporal dependency, whereas the
long temporal dependency is modeled with our JEANIE.
Each temporal block is encoded by the MLP into a d×J

dimensional feature map:

X̂=(MLP(X;FMLP ))
T ∈RJ×d. (2)

We obtain K×K ′×τ query and τ ′ support feature maps,
each of size J × d. Each maps is forwarded to a GNN. For
S2GC [154] (default GNN in our work) with L layers, we
have:

̂̂
X=

1

L

L∑
l=1

(
(1−α)SlX̂+αX̂

)
∈RJ×d, (3)

where S is the adjacency matrix capturing connectivity
of body joints, whereas 0 ≤ α ≤ 1 controls the self-
importance of each body joint. Appendix B describes several
GNN variants we experimented with: GCN [42], SGC [127],
APPNP [43] and S2GC [154].

Optionally, a transformer2 (described below in “Trans-
former Encoder”) may be used. Finally, an FC layer returns
Ψ ∈ Rd′×K×K′×τ query feature maps and Ψ ′ ∈ Rd′×τ ′

support feature maps. Feature maps are passed to JEANIE
whose output is passed into the similarity classifier. The
whole Encoding Network is summarized as follows. Let
support maps Ψ ′ ≡ [f(X ′

1;F), ..., f(X ′
τ ′ ;F)] ∈ Rd′×τ ′

and query maps Ψ ≡ [f(X1,1,1;F), ..., f(XK,K′,τ ;F)] ∈

2Our transformer is similar to ViT [17] but instead of using image
patches, we feed each body joint encoded by GNN into the transformer.
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Rd′×K×K′×τ . For M query and M support frames per
block, X∈R3×J×M and X′∈R3×J×M . We also define:

f(X;F)= (4)

FC(Transf(GNN(MLP(X;FMLP );FGNN );FTr);FFC),

where F ≡ [FMLP ,FGNN ,FTr,FFC ] is the set of param-
eters of EN (including an optional transformer).

Transformer Encoder. Vision transformer [17] consists of
alternating layers of Multi-Head Self-Attention (MHSA)
and a feed-forward MLP (2 FC layers with a GELU non-
linearity intertwined). LayerNorm (LN) is applied before
every block, and residual connections after every block. If
transformer is used, each feature matrix X̂ ∈ RJ×d per tem-

poral block is encoded by a GNN into ̂̂
X ∈ RJ×d and then

passed to the transformer. Similarly to the standard trans-
former, we prepend a learnable vector ytoken ∈ R1×d to
the sequence of block features X̂ obtained from GNN, and
we also add the positional embeddings Epos ∈ R(1+J)×d

based on the standard sine and cosine functions so that to-
ken ytoken and each body joint enjoy their own unique posi-
tional encoding. One can think of our GNN block as replac-
ing the tokenizer linear projection layer of a standard trans-
former. Compared to the use of FC layer as linear projection
layer, our GNN tokenizer in Eq. (5) enjoys (i) better em-
beddings of human body joints based on the graph structure
(ii) no learnable parameters. From the tokenizer, we obtain
Z0∈R(1+J)×d:

Z0 = [ytoken;GNN(X̂)] +Epos, (5)

and feed it into in the following transformer backbone:

Z′
k = MHSA(LN(Zk−1)) + Zk−1, k = 1, ..., Ltr (6)

Zk = MLP(LN(Z′
k)) + Z′

k, k = 1, ..., Ltr (7)

y′ = LN
(
Z

(0)
Ltr

)
where y′ ∈ R1×d (8)

f(X;F) = FC(y′T ;FFC) ∈ Rd′
, (9)

where Z
(0)
Ltr

is the first d-dimensional row vector extracted
from the output matrix ZLtr ∈ R(J+1)×d, and Ltr controls
the depth of the transformer (the number of layers), whereas
F ≡ [FMLP ,FGNN ,FTr,FFC ] is the set of parameters of
EN. Finally, f(X;F) from Eq. (9) becomes equivalent of
Eq. (4) with the transformer.

3.2 JEANIE

Prior to explaining the details of the JEANIE measure,
we briefly explain details of soft-DTW.

Soft-DTW [15, 16]. Dynamic Time Warping can be seen as
a specialized “metric” with a matching transportation plan3

3In analogy to terminology used in Optimal Transport (e.g., the
Wasserstein distance), we call it a transportation plan. Also, notice that
Soft-DTW may violate some of the metric axioms.

acting on the temporal mode of sequences. Soft-DTW is de-
fined as:

dDTW(Ψ ,Ψ ′)=SoftMinγ
A∈Aτ,τ′

〈
A,D(Ψ ,Ψ ′)

〉
, (10)

where SoftMinγ(α)=−γlog
∑
i

exp(−αi/γ). (11)

The binary A∈Aτ,τ ′ encodes a path within the transporta-
tion plan Aτ,τ ′ which depends on lengths τ and τ ′ of se-
quences Ψ ≡ [ψ1, ...,ψτ ] ∈ Rd′×τ , Ψ ′ ≡ [ψ′

1, ...,ψ
′
τ ′ ] ∈

Rd′×τ ′
. D ∈ Rτ×τ ′

+ ≡ [dbase(ψm,ψ′
n)](m,n)∈Iτ×Iτ′ is the

matrix of distances, evaluated for τ×τ ′ frames (or temporal
blocks) according to some base distance dbase(·, ·), i.e., the
Euclidean distance.

In what follows, we make use of principles of soft-
DTW, i.e., the property of time-warping. However, we de-
sign a joint alignment between temporal skeleton sequences
and simulated skeleton viewpoints, which means we achieve
joint time-viewpoint warping (a novel idea never done be-
fore).

JEANIE. Matching query-support pairs requires temporal
alignment due to potential offset in locations of discrimina-
tive parts of actions, and due to potentially different dynam-
ics/speed of actions taking place. The same concerns the
direction of actor’s pose, i.e., consider the pose trajectory
w.r.t. the camera. Thus, the JEANIE measure is equipped
with an extended transportation plan A′≡Aτ,τ ′,K,K′ , where
apart from temporal block counts τ and τ ′, for query se-
quences, we have possible ηaz left and ηaz right steps from
the initial camera azimuth, and ηalt up and ηalt down steps
from the initial camera altitude. Thus, K = 2ηaz+1, K ′ =

2ηalt+1. For the variant with Euler angles, we simply have
A′′ ≡Aτ,τ ′,K,K′ where K =2ηx+1, K ′ =2ηy+1 instead.
The JEANIE formulation is given as:

dJEANIE(Ψ ,Ψ ′)=SoftMinγ
A∈A′

〈
A,D(Ψ ,Ψ ′)

〉
, (12)

where D ∈ RK×K′×τ×τ ′

+ ≡ [dbase(ψm,k,k′ ,ψ′
n)] (m,n)∈Iτ×Iτ′

(k,k′)∈IK×IK′

,

and tensor D contains distances evaluated between all pos-
sible temporal blocks.

Figure 6 illustrates one step of JEANIE. Suppose the
given viewing angle set is {−40◦,−20◦, 0◦, 20◦, 40◦}. For
the current node at (t, t′, n) we evaluate, we have to aggre-
gate its base distance with the smallest aggregated distance
of its predecessor nodes. The “1-max shift” means that the
predecessor node must be a direct neighbor of the current
node (imagine that dots on a 3D grid are nodes connected
by links). Thus, for 1-max shift, at location (t, t′, n), we ex-
tract the node’s base distance and add it together with the
minimum of aggregated distances at the shown 9 predeces-
sor nodes. We store that aggregated distance at (t, t′, n), and
we move to the next node. Note that for viewpoint index n,
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Algorithm 1 Joint tEmporal and cAmera viewpoiNt alIgn-
mEnt (JEANIE).
Input (forward pass): Ψ ,Ψ ′, γ>0, dbase(·, ·), ι-max shift.
1: r:,:,:=∞, rn,1,1=dbase(ψn,1,ψ′

1), ∀n∈{−η, ..., η}
2: Π ≡ {−ι, ..., 0, ..., ι} × {(0, 1), (1, 0), (1, 1)}
3: for t∈Iτ :
4: for t′∈Iτ ′ :
5: if t ̸=1 or t′ ̸=1:
6: for n∈{−η, ..., η}:
7: rn,t,t′ = dbase(ψn,t,ψ′

t′)

8: +SoftMinγ

(
[rn−i,t−j,t′−k](i,j,k)∈Π

)
Output: SoftMinγ

(
[rn,τ,τ ′ ]n∈{−η,...,η}

)

we look up (n−1, n, n+1) neighbors. Extension to the ι-
max shift is straightforward. The importance of low value
of ι-max shift, e.g., ι = 1 is that low value of ι promotes
the so-called smoothness of alignment. That is, while time
or viewpoint may be warped, they are not warped abruptly
(e.g., the subject’s pose is not allowed to suddenly rotate by
90◦ in one step then rotate back by −90◦. This smoothness
is the key preventing greedy matching that would result in
an overoptimistic distance between two sequences.

Algorithm 1 illustrates JEANIE. For brevity, let us tackle
the camera viewpoint alignment along the azimuth, e.g.,
for some shifting steps −η, ..., η, each with size ∆θaz .
The maximum viewpoint change from block to block is ι-
max shift (smoothness). As we have no way to know the
initial optimal camera shift, we initialize all possible ori-
gins of shifts in accumulator rn,1,1 = dbase(ψn,1,ψ

′
1) for

all n ∈ {−η, ..., η}. Subsequently, steps related to soft-
DTW (temporal-viewpoint matching) take place. Finally,
we choose the path with the smallest distance over all
possible viewpoint ends by selecting a soft-minimum over
[rn,τ,τ ′ ]n∈{−η,...,η}. Notice that elements of the accumu-
lator tensor R ∈ R(2ι+1)×τ×τ ′

are accessed by writing
rn,t,t′ . Moreover, whenever either index n−i, t−j or t′−k

in rn−i,t−j,t′−k (see algorithm) is out of bounds, we define
rn−i,t−j,t′−k = ∞.

Free Viewpoint Matching (FVM). To ascertain whether
JEANIE is better than performing separately the temporal
and simulated viewpoint alignments, we introduce an impor-
tant and plausible baseline called Free Viewpoint Matching.
FVM, for every step of DTW, seeks the best local viewpoint
alignment, thus realizing a non-smooth temporal-viewpoint
path in contrast to JEANIE. To this end, we apply soft-DTW
in Eq. (12) with the base distance replaced by:

dFVM(ψt,ψ′
t′ )

= SoftMinγ
m,n∈{−η,...,η}

dbase
(
ψm,n,t,ψ

′
m′,n′,t′

)
, (13)

where Ψ ∈ Rd′×K×K′×τ and Ψ ′ ∈ Rd′×K×K′×τ ′
are query

and support feature maps. We abuse slightly the notation by
writing dFVM(ψt,ψ′

t′ )
as we minimize over viewpoint indexes

inside of Eq. (13). Thus, we calculate the distance matrix
D∈Rτ×τ ′

+ ≡ [dFVM(ψt,ψ
′
t′)](t,t′)∈Iτ×Iτ′ for soft-DTW.

Fig. 7 shows the comparison between soft-DTW (view-
wise), FVM and our JEANIE. FVM is a greedy matching
method which leads to complex zigzag path in 3D space
(we illustrate the camera viewpoint in a single mode, e.g.,
the azimuth for ψn,t, and no viewpoint mode for ψ′

t′). Al-
though FVM is able to produce the path with a smaller ag-
gregated distance compared to soft-DTW and JEANIE, it
suffers from obvious limitations: (i) It is unreasonable for
poses in a given sequence to match under extreme sudden
changes of viewpoints. (ii) Even if two sequences are from
two different classes, FVM still yields the smallest distance
(decreased inter-class variance).

3.3 Loss Function for Supervised FSAR

For the N -way Z-shot problem, we have one query fea-
ture map and N × Z support feature maps per episode.
We form a mini-batch containing B episodes. Thus, we
have query feature maps {Ψb}b∈IB

and support feature
maps {Ψ ′

b,n,z}b∈IB
n∈IN
z∈IZ

. Moreover,Ψb andΨ ′
b,1,: share the same

class, one of N classes drawn per episode, forming the sub-
set C‡ ≡ {c1, ..., cN} ⊂ IC ≡ C.

Specifically, labels y(Ψb) = y(Ψ ′
b,1,z),∀b ∈ IB , z ∈ IZ

while y(Ψb) ̸= y(Ψ ′
b,n,z),∀b ∈ IB , n ∈ IN \{1}, z ∈ IZ .

In most cases, y(Ψb) ̸= y(Ψb′) if b ̸= b′ and b, b′ ∈ IB . Se-
lection of C‡ per episode is random. For the N -way Z-shot
protocol, we minimize:

l(d+,d−)=
(
µ(d+)−{µ(TopMinβ(d

+))}
)2

(14)

+
(
µ(d−)−{µ(TopMaxNZβ(d

−))}
)2
, (15)

where


d+=[dJEANIE(Ψb,Ψ

′
b,1,z)]b∈IB

z∈IZ

d−=[dJEANIE(Ψb,Ψ
′
b,n,z)]b∈IB

n∈IN\{1}
z∈IZ

,

and d+ is a set of within-class distances for the mini-batch
of size B given N -way Z-shot learning protocol. By anal-
ogy, d− is a set of between-class distances. Function µ(·)
is simply the mean over coefficients of the input vector,
{·} detaches the graph during the backpropagation step,
whereas TopMinβ(·) and TopMaxNZβ(·) return β smallest
and NZβ largest coefficients from the input vectors, respec-
tively. Thus, Eq. (14) promotes the within-class similarity
while Eq. (15) reduces the between-class similarity. Integer
β ≥ 0 controls the focus on difficult examples, e.g., β = 1

encourages all within-class distances in Eq. (14) to be close
to the positive target µ(TopMinβ(·)), the smallest observed
within-class distance in the mini-batch. If β>1, this means
we relax our positive target. By analogy, if β = 1, we en-
courage all between-class distances in Eq. (15) to approach
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Algorithm 2 Unsupervised FSAR (one training iteration by
alternating over variables).
Input: Υ ≡ {Ψb}b∈IB

∪ {Ψ ′
b,n,z}b∈IB

n∈IN
z∈IZ

: query/support seq. in batch;

F : EN parameters;M andA; alpha iter and dic iter: numbers
of iterations for updatingA andM ; ω, ωDL and ωEN: the learning rate
forA,M and F respectively; B: size of the mini-batch.
1: for i = 1, ..., alpha iter: (fixM and updateA)
2: A := A− ω∇ALunsup(Υ ;A,M ,F)

3: for i = 1, ..., dic iter: (fixA and updateM )
4: M :=M−ωDL∇MLunsup(Υ ;A,M ,F)

5: F := F−ωEN∇FLunsup(Υ ;A,M ,F) (fixM &A, update F)
Output: F andM

the negative target µ(TopMaxNZβ(·)), the average over the
largest NZ between-class distances. If β > 1, the negative
target is relaxed.

3.4 Feature Coding and Dictionary Learning for
Unsupervised FSAR

Recall from Section 1 that unsupervised FSAR forms a
dictionary from the training data without the use of labels.
Assigning labeled test support samples and test query into
cells of a dictionary lets infer the query label by associating
query with the support sample (to paraphrase, if they share
the same dictionary cell, they share the class label).

In this setting, we also use a mini-batch with B episodes.
Thus, B query samples and BNZ support samples give the
total of N ′=B(NZ+1) samples per batch for feature cod-
ing and dictionary learning. Let dictionary M ∈ Rd′·τ∗×k

and dictionary-coded matrix A ≡ [α1, ...,αN ′ ] ∈ Rk×N ′
.

Let τ∗ be set as the average number of temporal blocks over
training sequences. For dictionary M and some codes A,
the reconstructed feature map is given asMA ∈ Rd′·τ∗×N ′

.
In what follows we reshape the reconstructed feature map
so that MA ∈ Rd′×τ∗×N ′

. The feature map per sequence
is given as Ψ ∈Rd′×K×K′×τ×N ′

. All query and support se-
quences per batch form a set Υ ≡ {Ψb}b∈IB

∪{Ψ ′
b,n,z}b∈IB

n∈IN
z∈IZ

with N ′ feature maps which we select by writing Ψi ∈
Υ where i = 1, ..., N ′. They are obtained from Encoding
Network the same way as for supervised FSAR except that
both query and support sequences now are equipped with
K ×K ′ viewpoints. Algorithm 2 and Figure 8 illustrate un-
supervised FSAR learning with JEANIE. In short, we min-
imize the following loss w.r.t. F , M and A by alternating
over these variables:

Lunsup(Υ ;A,M ,F)=

N ′∑
i=1

d2JEANIE(Ψi(F),Mαi) + κΩ(αi(F),M ,Ψi), (16)

Fig. 8: Unsupervised FSAR uses the JEANIE measure as
a distance between feature map Φ of a sequence and its
dictionary-based reconstruction Mα. LcSA performs fea-
ture coding to obtain dictionary-coded α. DL learns the dic-
tionaryM .

where F ≡ [FMLP ,FGNN ,FTr,FFC ] is the set of param-
eters of EN associated with Ψ , that is, feature maps depend
on these parameters, i.e., we work with a function Ψ(F) not
a constant.

Similarly to the Euclidean distance, dJEANIE(·, ·) in Eq.
(16) pursues the reconstruction of the feature map Ψi by
the linear combination of dictionary codewords, given as
Mαi. The reconstruction error d2JEANIE(Ψi,Mαi) is en-
couraged to be small. However, unlike the Euclidean dis-
tance, JEANIE ensures temporal and viewpoint alignment
of sequences Ψi with the dictionary-based reconstruction
Mαi. ConstraintΩ(αi,M ,Ψi) is a regularization term de-
pending on the selection of feature coding method. Such
a regularization encourages discriminative description, i.e.,
similar and different feature vectors obtain similar and dif-
ferent dictionary-coded representations, respectively. Ap-
pendix C provides details of several feature coding and dic-
tionary learning strategies which determineΩ. In our work,
the default choice is Soft Assignment and Dictionary learn-
ing from Appendices C.1 and C.2 due to their simplicity
and good performance. As the Soft Assignment code [78]
was adapted to use JEANIE, we kept their number of itera-
tions alpha iter = 50, dic iter = 5. Dictionary size
k = 4096 was optimal, whereas τ∗ ranged between 30 and
60 for smaller and larger datasets, respectively.

During testing, we use the trained model F and the learnt
dictionary M , pass test support and query sequences via
Eq. (16) but solve only w.r.t. A by till A converges. Subse-
quently, we compare the dictionary-coded vectors of query
sequences with the corresponding dictionary-coded vectors
of support sequences by using some distance measure, e.g.,
the ℓ1 or ℓ2 norm. We also explore the use of kernel-based
distances, e.g., Histogram Intersection Kernel (HIK) distance
and Chi-Square Kernel (CSK) distance, as they are designed
for comparing vectors constrained on the ℓ1 simplex (Soft
Assignment produces the ℓ1 normalised codes α). The con-
struction of the kernel distance involves a transformation
from similarities to distances.
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Letα andα′ be some dictionary-coded vectors obtained
by the use of JEANIE in Eq. (16). Then for a kernel func-
tion k(α,α′), the induced distance between α and α′ is
given by d(α,α′) = k(α,α) + k(α′,α′)− 2k(α,α′). Let
∥α∥2 = ∥α′∥2 = 1. The HIK distance for kHIK(α,α

′) =∑d′

i=1 min(αi, α
′
i) is given as dHIK(α,α

′)=2−2kHIK(α,α
′).

The CSK distance for kernel kCSK(α,α
′) =

∑d′

i=1
2αiα

′
i

αi+α′
i

is
dCSK(α,α

′)=2−2kCSK(α,α
′).

The closest nearest neighbor match of test query to ele-
ments of the test support set determines the test label of the
query sequence.

3.5 Fusion of Supervised and Unsupervised FSAR

Our final contribution is to introduce four simple strate-
gies for fusing our supervised and unsupervised FSAR ap-
proaches to boost the performance. As supervised learning
is label-driven and unsupervised learning is reconstruction-
driven, we expect both such strategies produce complemen-
tary feature spaces amenable to fusion.

In what follows, we make use of both support and query
feature maps defined over multiple viewpoints (Ψ ,Ψ ′ ∈
Rd′×K×K′×τ ):

Ψ ′≡f∗(X ′;F)≡ [f(X ′
1,1,1;F), ..., f(X ′

K,K′,τ ′ ;F)],

Ψ≡f∗(X ;F)≡ [f(X1,1,1;F), ..., f(XK,K′,τ ;F)].

A weighted fusion of supervised and unsupervised FSAR
scores. The simplest strategy is to train supervised and un-
supervised FSAR models separately, and combine their pre-
dictions during testing. We call such a baseline as “weighted
fusion”. During the testing stage, we combine the distances
of supervised and unsupervised models as follows:

dfused=ρ dJEANIE(Ψq,Ψ
′
n,z) + (1− ρ)dα(αq,α

′
n,z), (17)

where dα(·, ·) is the distance measure for dictionary-encoded
vectors, e.g., the ℓ1 norm, HIK distance or CSK distance,
0 ≤ ρ ≤ 1 balances the impact of supervised and unsuper-
vised models, respectively.

Finetuning unsupervised model by supervised FSAR. For
this baseline strategy, we firstly train the model using un-
supervised FSAR, and then we finetune the learnt unsuper-
vised model by using supervised FSAR. During testing stage,
we evaluate on supervised learning, unsupervised learning
and a fusion of both based on Eq. (17). In this case, one EN
is trained which results in two sets of parameters–the first set
is based on unsupervised training and the second set is based
on supervised finetuning. We call it “finetuning unsup.”

MAML-inspired fusion of supervised and unsupervised
FSAR. Inspired by the success of MAML [26] and cate-
gorical learner [59], we introduce a fusion strategy where

Algorithm 3 Fusion of Supervised and Unsupervised FSAR
by MAML-inspired Setting (one training iteration).
Input: Γ ≡ {X b}b∈IB

∪ {X ′
b,n,z}b∈IB

n∈IN
z∈IZ

: query/support blocks in

batch; F : EN parameters; M and A; alpha iter and dic iter:
numbers of iterations for updating A and M ; ω, ωDL and ωEN: the
learning rate forA,M and F respectively; B: size of the mini-batch.

1: Υ ≡ {Ψb}b∈IB
∪{Ψ ′

b,n,z}b∈IB
n∈IN
z∈IZ

where

{
Ψb=f∗(X b;F)

Ψ ′
b,n,z=f∗(X ′

b,n,z;F)

(obtain feature maps for global parameters F)
2: (F̂ ,M) = Algorithm2(Υ,F ,M ,A, (unsupervised FSAR)

alpha iter,dic iter, ω, ωDL, ωEN)

3: Υ̂ ≡ {Ψ̂b}b∈IB
∪{Ψ̂ ′

b,n,z}b∈IB
n∈IN
z∈IZ

where

{
Ψ̂b=f∗(X b; F̂)

Ψ̂ ′
b,n,z=f∗(X ′

b,n,z; F̂)

(obtain feature maps for parameters F̂ from the unsupervised step)
4: d̂+=[dJEANIE(Ψ̂b, Ψ̂

′
b,1,z)]b∈IB

z∈IZ

(within-class distance)

5: d̂−=[dJEANIE(Ψ̂b, Ψ̂
′
b,n,z)]b∈IB

n∈IN\{1}
z∈IZ

(between-class distance)

6: F :=F−ωEN∇F l(d̂+, d̂−)

Output: F andM

the inner loop uses the unsupervised FSAR (Eq. (16)) and
the outer loop uses the supervised learning loss (Eq.(14) and
(15)) for the model update. Algorithm 3 details our MAML-
inspired fusion strategy, called “MAML-inspired fusion”.

Specifically, we start by generating representations with
several viewpoints. For each mini-batch of size B we form
a set with N ′ feature maps which are passed to Algo-
rithm 2 which updates EN parameters F towards F̂ that help
accommodate unsupervised reconstruction-driven learning
(so-called task-specific gradient where the task is unsuper-
vised learning). We then recompute N ′ feature maps based
on parameters F̂ . Finally, we apply supervised loss on such
feature maps but we update now parameters F which means
that parameters F are tuned for the global label-driven task
with help of unsupervised task.

Intuitively, it is a second-order gradient model. Specif-
ically, one takes the gradient step in the direction pointed
by the unsupervised loss to obtain task-specific EN param-
eters. Subsequently, given these task-specific parameters,
task-specific feature maps are extracted and passed into the
supervised loss to perform the gradient descent step in the
direction pointed by the unsupervised loss to obtain update
of global EN parameters.

Fusion by alignment of supervised and unsupervised fea-
ture maps. Inspired by domain adaptation [47, 48, 97],
Algorithm 4 in Appendix D is an easy-to-interpret simpli-
fication (called “adaptation-based”) of the above MAML-
inspired fusion. Instead of complex gradient interplay be-
tween unsupervised and supervised loss functions, we ex-
plicitly align “supervised” feature maps towards “unsuper-
vised” feature maps.
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4 Experiments

4.1 Datasets and Protocols

Below, we describe the datasets and evaluation protocols
on which we validate our FSAR with JEANIE.

i. UWA3D Multiview Activity II [84] contains 30 actions
performed by 9 people in a cluttered environment. The
Kinect camera was used in 4 distinct views: front view
(V1), left view (V2), right view (V3), and top view (V4).

ii. NTU RGB+D (NTU-60) [86] contains 56,880 video se-
quences and over 4 million frames. This dataset has vari-
able sequence lengths and high intra-class variations.

iii. NTU RGB+D 120 (NTU-120) [62] contains 120 action
classes (daily/health-related), and 114,480 RGB+D video
samples captured with 106 distinct human subjects from
155 different camera viewpoints.

iv. Kinetics [40] is a large-scale collection of 650,000 video
clips that cover 400/600/700 human action classes. It
includes human-object interactions such as playing in-
struments, as well as human-human interactions such as
shaking hands and hugging. As the Kinetics-400 dataset
provides only the raw videos, we follow approach [130]
and use the estimated joint locations in the pixel coor-
dinate system as the input to our pipeline. To obtain the
joint locations, we first resize all videos to the resolu-
tion of 340 × 256, and convert the frame rate to 30 FPS.
Then we use the publicly available OpenPose [8] tool-
box to estimate the location of 18 joints on every frame
of the clips. As OpenPose produces the 2D body joint
coordinates and Kinetics-400 does not offer multi-view
or depth data, we use a network of Martinez et al.[72]
pre-trained on Human3.6M [10], combined with the 2D
OpenPose output to estimate 3D coordinates from 2D
coordinates. The 2D OpenPose and the latter network
give us (x, y) and z coordinates, respectively.

Evaluation protocols. For the UWA3D Multiview Activity
II, we use standard multi-view classification protocol [84,
108], but we apply it to one-shot learning as the view com-
binations for training and testing sets are disjoint. For NTU-
120, we follow the standard one-shot protocol [62]. Based
on this protocol, we create a similar one-shot protocol for
NTU-60, with 50/10 action classes used for training/testing
respectively. To evaluate the effectiveness of the proposed
method on viewpoint alignment, we also create two new pro-
tocols on NTU-120, for which we group the whole dataset
based on (i) horizontal camera views into left, center and
right views, (ii) vertical camera views into top, center and
bottom views. We conduct two sets of experiments on such
disjoint view-wise splits (i) (100/same 100): using 100 ac-
tion classes for training, and testing on the same 100 action
classes (ii) (100/novel 20): training on 100 action classes
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Fig. 9: The impact of viewing angles in (a) horizontal and
(b) vertical camera views on NTU-60.

Table 1: Experimental results on NTU-60 (left) and NTU-
120 (right) for different camera viewpoint simulations.

NTU-60 NTU-120
# Training Classes 10 20 30 40 50 20 40 60 80 100

Euler simple (K+K′) 54.3 56.2 60.4 64.0 68.1 30.7 36.8 39.5 44.3 46.9
Euler (K×K′) 60.8 67.4 67.5 70.3 75.0 32.9 39.2 43.5 48.4 50.2
CamVPC (K×K′) 59.7 68.7 68.4 70.4 73.2 33.1 40.8 43.7 48.4 51.4

but testing on the rest unseen 20 classes. Appendix H pro-
vides more details of training/evaluation protocols (subject
splits, etc.) for small-scale datasets as well as the large scale
Kinetics-400 dataset.

Stereo projections. For simulating different camera view-
points, we estimate the fundamental matrix F (Eq. (19)),
which relies on camera parameters. Thus, we use the Cam-
era Calibrator from MATLAB to estimate intrinsic, extrinsic
and lens distortion parameters. For a given skeleton dataset,
we compute the range of spatial coordinates x and y, re-
spectively. We then split them into 3 equally-sized groups
to form roughly left, center, right views and other 3 groups
for bottom, center, top views. We choose ∼15 frame images
from each corresponding group, upload them to the Camera
Calibrator, and export camera parameters. We then compute
the average distance/depth and height per group to estimate
the camera position. On NTU-60 and NTU-120, we simply
group the whole dataset into 3 cameras, which are left, cen-
ter and right views, as provided in [62], and then we compute
the average distance per camera view based on the height
and distance settings given in the table in [62].

4.2 Ablation Studies

We start our experiments by investigating various archi-
tectural choices and key hyperparameters of our model.

Camera viewpoint simulations. We choose 15 degrees as
the step size for the viewpoints simulation. The ranges of
camera azimuth and altitude are in [−90◦, 90◦]. Where
stated, we perform a grid search on camera azimuth and alti-
tude with Hyperopt [5]. Below, we explore the choice of the
angle ranges for both horizontal and vertical views. Fig. 9a
and 9b (evaluations on the NTU-60 dataset) show that the
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Table 2: The impact of the number of frames M in tempo-
ral block under stride step S on results (NTU-60). S=pM ,
where 1−p describes the temporal block overlap percent-
age. Higher p means fewer overlap frames between tempo-
ral blocks.

S = M S = 0.8M S = 0.6M S = 0.4M S = 0.2M
M 50-cls 20-cls 50-cls 20-cls 50-cls 20-cls 50-cls 20-cls 50-cls 20-cls
5 69.0 55.7 71.8 57.2 69.2 59.6 73.0 60.8 71.2 61.2
6 69.4 54.0 65.4 54.1 67.8 58.0 72.0 57.8 73.0 63.0
8 67.0 52.7 67.0 52.5 73.8 61.8 67.8 60.3 68.4 59.4
10 62.2 44.5 63.6 50.9 65.2 48.4 62.4 57.0 70.4 56.7
15 62.0 43.5 62.6 48.9 64.7 47.9 62.4 57.2 68.3 56.7
30 55.6 42.8 57.2 44.8 59.2 43.9 58.8 55.3 60.2 53.8
45 50.0 39.8 50.5 40.6 52.3 39.9 53.0 42.1 54.0 45.2

angle range [−45◦, 45◦] performs the best, and widening
the range in both views does not increase the performance
any further. Table 1 shows results for the chosen range
[−45◦, 45◦] of camera viewpoint simulations. (Euler sim-
ple (K+K ′)) denotes a simple concatenation of features
from both horizontal and vertical views, whereas (Euler
(K×K ′)) and (CamVPC(K×K ′)) represent the grid search
of all possible views. The table shows that Euler angles for
the viewpoint augmentation outperform (Euler simple), and
(CamVPC) (viewpoints of query sequences are generated by
the stereo projection geometry) outperforms Euler angles in
almost all the experiments on NTU-60 and NTU-120. This
proves the effectiveness of using the stereo projection geom-
etry for the viewpoint augmentation.

Block size M and stride size S. Recall from Figure 1, that
each skeleton sequence is divided into short-term temporal
blocks which may also partially overlap.

Table 2 shows evaluations w.r.t. block size M and stride
S, and indicates that the best performance (both 50-class and
20-class settings) is achieved for smaller block size (frame
count in the block) and smaller stride. Longer temporal
blocks decrease the performance due to the temporal infor-
mation not reaching the temporal alignment step of JEANIE.
Our block encoder encodes each temporal block for learn-
ing the local temporal motions, and aggregate these block
features finally to form the global temporal motion cues.
Smaller stride helps capture more local motion patterns.
Considering the accuracy-runtime trade-off, we choose M=

8 and S=0.6M for the remaining experiments.

GNN as a block of Encoding Network. Recall from Sec-
tion 3.1 and Appendix B that our Encoding Network uses a
GNN block. For that reason, we investigate several models
with the goal of justifying our default choice.

We conduct experiments on 4 GNNs listed in Table 3.
S2GC performs the best on large-scale NTU-60 and NTU-
120, APPNP outperforms SGC, and SGC outperforms GCN.
We also notice that using GNN as a projection layer per-
forms better than single FC layer used in standard trans-
former by ∼5%. We note that using the RBF-induced dis-
tance for dbase(·, ·) of JEANIE outperforms the Euclidean
distance. We choose S2GC as a block of our Encoding Net-

Table 3: Evaluations of GNN (block of Encoding Network).

FC layer GCN SGC APPNP S2GC S2GC
(Eucl.) (RBF)

NTU-60 (50-class) 51.2 56.0 68.1 68.5 75.6 78.1
NTU-120 (20-class) 23.3 27.9 30.7 30.8 34.5 37.2

Table 4: Experimental results on NTU-60 (left) and NTU-
120 (right) for ι-max shift.

NTU-60 NTU-120
10 20 30 40 50 20 40 60 80 100

ι=1 60.8 70.7 72.5 72.9 75.2 36.3 42.5 48.7 50.0 54.8
ι=2 63.8 72.9 74.0 73.4 78.1 37.2 43.0 49.2 50.0 55.2
ι=3 55.2 58.9 65.7 67.1 72.5 36.7 43.0 48.5 49.0 54.9
ι=4 54.5 57.8 63.5 65.2 70.4 36.5 42.9 48.3 48.9 54.3

work and we use the RBF-induced base distance for JEANIE
and other DTW-based models.

ι-max shift. Recall from Section 3.2 that the ι-max controls
the smoothness of alignment.

Table 4 shows the evaluations of ι for the maximum
shift. We notice that ι= 2 yields the best results for all the
experimental settings on both NTU-60 and NTU-120. In-
creasing ι does not help improve the performance. We think
ι relies on (i) the speeds of action execution (ii) the temporal
block size M and the stride S.

4.3 Implementation Details

Before we discuss our main experimental results, below
we provide network configurations and training details.

Network configurations. Given the temporal block size M

(the number of frames in a block) and desired output size
d, the configuration of the 3-layer MLP unit is: FC (3M →
6M ), LayerNorm (LN) as in [17], ReLU, FC (6M → 9M ),
LN, ReLU, Dropout (for smaller datasets, the dropout rate
is 0.5; for large-scale datasets, the dropout rate is 0.1), FC
(9M → d), LN. Note that M is the temporal block size and
d is the output feature dimension per body joint.

Transformer block. The hidden size of our transformer (the
output size of the first FC layer of the MLP in Eq. (7)) de-
pends on the dataset. For smaller scale datasets, the depth of
the transformer is Ltr=6 with 64 as the hidden size, and the
MLP output size is d = 32 (note that the MLP which pro-
vides X̂ and the MLP in the transformer must both have the
same output size). For NTU-60, the depth of the transformer
is Ltr =6, the hidden size is 128 and the MLP output size is
d=64. For NTU-120, the depth of the transformer is Ltr=6,
the hidden size is 256 and the MLP size is d = 128. For
Kinetics-skeleton, the depth for the transformer is Ltr =12,
hidden size is 512 and the MLP output size is d = 256.
The number of heads for the transformer of UWA3D Multi-
view Activity II, NTU-60, NTU-120 and Kinetics-skeleton
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Table 5: Results on NTU-60 (all use S2GC). All methods en-
joy temporal alignment by soft-DTW or JEANIE (joint tem-
poral and viewpoint alignment) except where indicated oth-
erwise. We use the ℓ2 norm for comparing the codes in unsu-
pervised setting with soft-DTW. For unsupervised JEANIE,
the distance for comparing the codes is indicated.

viewpoint align. 10 20 30 40 50simulation

Sup.

Matching Nets [103] 46.1 48.6 53.3 56.2 58.8
Matching Nets [103] 2V 47.2 50.7 55.4 57.7 60.2
ProtoNet [91] 47.2 51.1 54.3 58.9 63.0
ProtoNet [91] 2V 49.8 53.1 56.7 60.9 64.3
TAP [93] 54.2 57.3 61.7 64.7 68.3
Each frame to frontal view - - 52.9 53.3 54.6 54.2 58.3
Each block to frontal view - - 53.9 56.1 60.1 63.8 68.0
Traj. aligned (video-level) - - 36.1 40.3 44.5 48.0 50.2
Traj. aligned (block-level) - - 52.9 55.8 59.4 63.6 66.7
No soft-DTW (S2GC) - - 50.8 54.7 58.8 60.2 62.8
soft-DTW - T 53.7 56.2 60.0 63.9 67.8
JEANIE Euler T+V 54.0 56.0 60.2 63.8 67.8
JEANIE (simple concat.) Euler T+2V 54.3 56.2 60.4 64.0 68.1
JEANIE Euler T+2V 60.8 67.4 67.5 70.3 75.0
JEANIE CamVPC T+2V 59.7 68.7 68.4 70.4 73.2
JEANIE (+crossval.) CamVPC T+2V 63.4 72.4 73.5 73.2 78.1
JEANIE (+crossval. +Transf.) CamVPC T+2V 65.0 75.2 76.7 78.9 80.0

Unsup.
+Transf.

soft-DTW (HA) - T 16.3 23.7 28.3 31.8 33.1
soft-DTW (SC) - T 18.7 26.0 31.6 34.2 38.1
soft-DTW (SC+) - T 18.5 25.7 30.0 33.9 37.9
soft-DTW (LLC) - T 23.1 30.1 33.0 36.4 40.9
soft-DTW (SA) - T 25.4 31.7 34.6 38.0 41.7
soft-DTW (LcSA) - T 25.9 32.3 35.1 38.5 42.3
JEANIE (LLC)–ℓ1 CamVPC T+2V 27.5 33.6 36.0 41.6 44.5
JEANIE (LLC)–ℓ2 CamVPC T+2V 27.8 33.9 36.5 41.7 44.7
JEANIE (LLC)–HIK CamVPC T+2V 28.0 33.6 36.8 42.0 45.1
JEANIE (LLC)–CSK CamVPC T+2V 27.8 33.9 36.8 41.7 45.0
JEANIE (LcSA)–ℓ1 CamVPC T+2V 29.0 35.6 39.5 44.8 47.5
JEANIE (LcSA)–ℓ2 CamVPC T+2V 29.1 35.8 39.7 45.2 48.0
JEANIE (LcSA)–HIK CamVPC T+2V 28.8 35.8 39.7 45.0 47.7
JEANIE (LcSA)–CSK CamVPC T+2V 29.0 35.8 40.0 45.0 48.0
FVM (LcSA)–CSK CamVPC T+2V 27.0 33.4 36.5 42.0 45.1

Fusion
+Transf.

Weighted fusion CamVPC T+2V 66.5 76.9 79.0 81.2 81.5
Finetuning unsup. CamVPC T+2V 67.0 77.2 79.9 82.0 84.5
MAML-inspired fusion CamVPC T+2V 70.0 78.3 81.0 82.9 85.0
Adaptation-based CamVPC T+2V 69.8 78.2 80.7 82.3 84.8

is set as 6, 12, 12 and 12, respectively. The output size d′

of the final FC layer in Eq. (9) are 50, 100, 200, and 500
for UWA3D Multiview Activity II, NTU-60, NTU-120 and
Kinetics-skeleton, respectively.

Training details. The parameters (weights) of the pipeline
are initialized with the normal distribution (zero mean and
unit standard deviation). We use 1e-3 as the learning rate,
and the weight decay is set to 1e-6. We use the SGD op-
timizer. We set the number of training episodes to 100K
for NTU-60, 200K for NTU-120, 500K for 3D Kinetics-
skeleton, and 10K for UWA3D Multiview Activity II. We
use Hyperopt [5] for hyperparameter search on validation
sets for all the datasets.

4.4 Discussion on Supervised Few-shot Action Recognition

NTU-60. Table 5 (Sup.) shows that using the viewpoint align-
ment simultaneously in two dimensions, x and y for Euler
angles, or azimuth and altitude the stereo projection geom-
etry (CamVPC), improves the performance by 5–8% com-
pared to (Euler) with a simple concatenation of viewpoints,
a variant where the best viewpoint alignment path was cho-

Table 6: Experimental results on NTU-120 (S2GC back-
bone). All methods enjoy temporal alignment by soft-DTW
or JEANIE (joint temporal and viewpoint alignment) except
VA [139, 140] and other cited works. For VA∗, we used
soft-DTW on temporal blocks while VA generated temporal
blocks. For unsupervised soft-DTW and JEANIE, the best
distance for comparing the codes is indicated. For brevity,
we list unsupervised variants on LcSA but Table 11 in Ap-
pendix E contains all variants.

viewpoint align. 20 40 60 80 100simulation

Sup.

APSR [62] 29.1 34.8 39.2 42.8 45.3
SL-DML [75] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [74] 28.6 37.5 48.6 48.0 54.2
ProtoNet+VA-RNN(aug.) [139] 25.3 28.6 32.5 35.2 38.0
ProtoNet+VA-CNN(aug.) [140] 29.7 33.0 39.3 41.5 42.8
ProtoNet+VA-fusion(aug.) [140] 29.8 33.2 39.5 41.7 43.0
ProtoNet+VA∗-fusion(aug.) [140] 33.3 38.7 45.2 46.3 49.8
TAP [93] 31.2 37.7 40.9 44.5 47.3
ALCA-GCN [153] 38.7 46.6 51.0 53.7 57.6
No soft-DTW (S2GC) - - 30.0 35.9 39.2 43.6 46.4
soft-DTW - T 30.3 37.2 39.7 44.0 46.8
JEANIE Euler T+V 30.6 36.7 39.2 44.0 47.0
JEANIE (simple concat.) Euler T+2V 30.7 36.8 39.5 44.3 46.9
JEANIE Euler T+2V 32.9 39.2 43.5 48.4 50.2
JEANIE CamVPC T+2V 33.1 40.8 43.7 48.4 51.4
JEANIE (+crossval.) CamVPC T+2V 37.2 43.0 49.2 50.0 55.2
FVM (+crossval. +Transf.) CamVPC T+2V 34.5 41.9 44.2 48.7 52.0
JEANIE (+crossval. +Transf.) CamVPC T+2V 38.5 44.1 50.3 51.2 57.0

Unsup.
+Transf.

soft-DTW (LcSA)–ℓ2 - T 15.7 21.4 25.2 32.0 40.2
JEANIE (LcSA)–CSK CamVPC T+2V 18.6 25.2 32.0 39.6 48.5
FVM (LcSA)–CSK CamVPC T+2V 17.5 22.4 30.7 36.1 44.5

Fusion
+Transf.

Weighted fusion CamVPC T+2V 44.4 48.6 50.8 52.0 58.3
Finetuning unsup. CamVPC T+2V 45.6 50.8 53.0 55.0 60.2
MAML-inspired fusion CamVPC T+2V 48.2 53.3 57.0 60.3 62.1
Adaptation-based CamVPC T+2V 47.9 53.0 56.5 60.0 61.9

sen from the best alignment path along x and the best align-
ment path along y. Euler with (simple concat.) is better than
Euler with y rotations only ((V) includes rotations along y

while (2V) includes rotations along two axes). We indicate
where temporal alignment (T) is also used. When we use
HyperOpt [5] to search for the best angle range in which
we perform the viewpoint alignment (CamVPC), the results
improve further. Enabling the viewpoint alignment for sup-
port sequences (CamVPC) yields extra improvement, and
our best variant of JEANIE boosts the performance by ∼2%.

We also show that aligning query and support trajecto-
ries by the angle of torso 3D joint, denoted (Traj. aligned)
are not very powerful. We note that aligning piece-wise parts
(blocks) is better than trying to align entire trajectories. In
fact, aligning individual frames by torso to the frontal view
(Each frame to frontal view) and aligning block average of
torso direction to the frontal view (Each block to frontal
view) were marginally better. We note these baselines use
soft-DTW.

NTU-120. Table 6 (Sup.) shows that our proposed method
achieves the best results on NTU-120, and outperforms the
recent SL-DML and Skeleton-DML by 6.1% and 2.8% re-
spectively (100 training classes). Note that Skeleton-DML
requires the pre-trained model for the weights initialization
whereas our proposed model with JEANIE is fully differen-
tiable. For comparisons, we extended the view adaptive neu-
ral networks [140] by combining them with ProtoNet [91].
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Table 7: Experiments on 2D and 3D Kinetics-skeleton. Note
that we have no results on JEANIE or FVM for 2D coor-
dinates as these require very different viewpoint modeling
than 3D coordinates. For brevity, we list unsupervised vari-
ants on LcSA but Table 12 in Appendix E contains more
variants.

viewpoint alignment 2D skel. 3D skel.simulation

Sup.

No soft-DTW(S2GC) - - 32.8 35.9
soft-DTW - T 34.7 39.6
FVM Euler T+2V - 44.1
JEANIE Euler T+2V - 50.3
JEANIE(+Transf.) Euler T+2V - 52.5
JEANIE(+Transf.) CamVPC T+2V - 52.8

Unsup.
+Transf.

soft-DTW(LcSA)–ℓ2 - T 19.3 22.2
JEANIE (LcSA)–CSK CamVPC T+2V - 28.3
FVM (LcSA)–ℓ2 CamVPC T+2V - 25.1

Fusion
+Transf.

Weighted fusion CamVPC T+2V - 53.3
Finetuning unsup. CamVPC T+2V - 54.2
MAML-inspired fusion CamVPC T+2V - 57.0
Adaptation-based CamVPC T+2V - 56.3

VA-RNN+VA-CNN [140] uses 0.47M+24M parameters
with random rotation augmentations while JEANIE uses
0.25–0.5M parameters. Their rotation+translation keys
are not proven to perform smooth optimal alignment as
JEANIE. In contrast, dJEANIE performs jointly a smooth
viewpoint-temporal alignment with smoothness by design.
They also use Euler angles which are a worse option (see
Table 5 and 6) than the camera projection of JEANIE. We
notice that ProtoNet+VA backbones is 12% worse than our
JEANIE. Even if we split skeletons into blocks to let soft-
DTW perform temporal alignment of prototypes & query,
JEANIE is still 4–6% better. Notice also that JEANIE with
transformer is between 3% and 6% better than JEANIE with
no transformer, which validates the use of transformer on
large datasets.

Kinetics-skeleton. We evaluate our proposed model on both
2D and 3D Kinetics-skeleton. We follow the training and
evaluation protocol in Appendix H. Table 7 shows that us-
ing 3D skeletons outperforms the use of 2D skeletons by
3–4%. The temporal alignment only (with soft-DTW) out-
performs baseline (without alignment) by ∼2% and 3% on
2D and 3D skeletons respectively, and JEANIE outperforms
the temporal alignment only by around 5%. Our best vari-
ant with JEANIE further boosts results by 2%. We notice
that the improvements for the use of camera viewpoint sim-
ulation (CamVPC) compared to the use of Euler angles are
limited, around 0.3% and 0.6% for JEANIE and FVM re-
spectively. The main reason is that the Kinetics-skeleton is a
large-scale dataset collected from YouTube videos, and the
camera viewpoint simulation becomes unreliable especially
when videos are captured by multiple different devices, e.g.,
camera and mobile phone.

4.5 Discussion on Unsupervised Few-shot Action
Recognition

Recall from Section 3.4 that JEANIE can help train un-
supervised FSAR by forming a dictionary that relies on
temporal-viewpoint alignment of JEANIE which factors out
nuisance temporal and pose variations in sequences.

However, the choice of feature coding and dictionary
learning method can affect the performance of unsupervised
learning. Thus, we investigate several variants from Ap-
pendix C.

Table 5 (Unsup.) and Table 11 in Appendix E (extension
of Table 6 (Unsup.)) show on NTU-60 and NTU-120 that the
LcSA coder performs better than SA by ∼0.6% and 1.5%,
whereas SA outperforms LLC by ∼1.5% and 2%. As LcSA
and SA are based on the non-linear sigmoid-like reconstruc-
tion functions, we suspect they are more robust than linear
reconstruction function of LLC. Since the LcSA is the best
performer in our experiments followed by SA and LLC or
SC, we choose LcSA for further analysis.

Table 5 (Unsup.), and Tables 11 and 12 in Appendix E
(extensions of Tables 6 (Unsup.) and 7 (Unsup.)) also show
that the choose of different distance measures for compar-
ing the dictionary-coded vectors of sequences during the test
stage does not affect the performance by much. The kernel-
induced distances, e.g., HIK distance and CSK distance
and ℓ2-norm outperform the ℓ1 norm by ∼0.5% on aver-
age. We choose the CSK distance for unsupervised JEANIE
with LcSA as the default distance for comparing dictionary-
coded vectors as it was marginally better performer in the
majority of experiments.

Tables 5 (Unsup.), 6 (Unsup.) and 7 (Unsup.) show that
unsupervised JEANIE (temporal-viewpoint alignment) out-
performs soft-DTW (temporal alignment only) by up to 5%,
9% and 6% on NTU-60, NTU-120 and Kinetics-skeleton,
respectively. Table 8 (Unsup.) shows that the biggest im-
provement is obtained when using unsupervised JEANIE
on UWA3D Multiview Activity II dataset, with 10% per-
formance gain. This outlines the importance of the joint
temporal-viewpoint alignment under heavy camera pose
variations.

Interestingly, FVM in unsupervised learning performs
worse compared to our JEANIE, e.g., JEANIE suppresses
FVM by ∼3%, 4% and 3% respectively on NTU-60, NTU-
120 and Kinetics-skeleton in Tables 5 (Unsup.), 6 (Unsup.)
and 7 (Unsup.). On UWA3D Multiview Activity II in Ta-
ble 8 (Unsup.), JEANIE outperforms FVM by more than
5%. This is because FVM always seeks the best local view-
point alignment for every step of soft-DTW which real-
izes a non-smooth temporal-viewpoint path in contrast to
JEANIE. Without the guidance of label information, FVM
fails to capture the corresponding relationships between
each temporal and viewpoint alignment. Thus, FVM pro-
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Table 8: Experiments on the UWA3D Multiview Activity II. All with S2GC layer unless specified.

align. Train V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 MeanTest V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

Sup.

GCN - 36.4 26.2 20.6 30.2 33.7 22.4 43.1 26.6 16.9 12.8 26.3 36.5 27.6
SGC - 40.9 60.3 44.1 52.6 48.5 38.7 50.6 52.8 52.8 37.2 57.8 49.6 48.8

+soft-DTW T 43.9 60.8 48.1 54.6 52.6 45.7 54.0 58.2 56.7 40.2 60.2 51.1 52.2
+JEANIE T+2V 47.0 62.8 50.4 57.8 53.6 47.0 57.9 62.3 57.0 44.8 61.7 52.3 54.6

APPNP - 42.9 61.9 47.8 58.7 53.8 44.0 52.3 60.3 55.1 38.2 58.3 47.9 51.8
+soft-DTW T 44.3 63.2 50.7 62.3 53.9 45.0 56.9 62.8 56.4 39.3 60.1 51.9 53.9
+JEANIE T+2V 46.8 64.6 51.3 65.1 54.7 46.4 58.2 65.1 58.8 43.9 60.3 52.5 55.6

S2GC - 45.5 64.4 46.8 61.6 49.5 43.2 57.3 61.2 51.0 42.9 57.0 49.2 52.5
+soft-DTW T 48.2 67.2 51.2 67.0 53.2 46.8 62.4 66.2 57.8 45.0 62.2 53.0 56.7
+FVM T+2V 50.7 68.8 56.3 69.2 55.8 47.1 63.7 68.8 62.5 51.4 63.8 55.7 59.5
+JEANIE T+2V 55.3 70.2 61.4 72.5 60.9 50.8 66.4 73.9 68.8 57.2 66.7 60.2 63.7

Unsup.
soft-DTW(LcSA)–ℓ2 T 40.5 41.4 40.2 43.6 38.2 39.9 38.2 40.2 41.5 39.7 40.9 38.8 40.3
JEANIE(LcSA)–CSK T+2V 53.0 52.5 50.1 51.0 47.6 49.2 49.5 52.3 51.3 49.0 49.2 47.1 50.2
FVM(LcSA)–CSK T+2V 46.2 44.0 45.1 48.0 43.5 44.1 43.8 46.0 47.2 43.5 45.8 43.1 45.0

Fusion

Weighted fusion T+2V 64.9 70.4 63.9 73.4 62.1 57.3 67.8 74.1 69.7 61.3 68.9 63.2 66.4
Finetuning unsup. T+2V 73.3 70.8 68.8 74.0 62.7 61.7 69.4 74.3 71.1 67.9 72.1 65.8 69.3
MAML-inspired fusion T+2V 78.7 73.9 72.7 75.9 65.8 70.9 74.3 76.2 77.9 77.3 80.2 73.0 74.7
Adaptation-based T+2V 76.3 71.5 72.0 75.0 65.8 69.2 72.8 75.5 75.9 76.5 78.3 71.7 73.4

Table 9: Results on NTU-120 (multi-view classification).
We use S2GC.

Eval. Protocol Train bott. bott. bott.& cent. left left left & cent.
Test cent. top top cent. right right

Sup.
100/same 100

soft-DTW 74.2 73.8 75.0 58.3 57.2 68.9
FVM 79.9 78.2 80.0 65.9 63.9 75.0
JEANIE 81.5 79.2 83.9 67.7 66.9 79.2

100/novel 20
soft-DTW 58.2 58.2 61.3 51.3 47.2 53.7
FVM 66.0 65.3 68.2 58.8 53.9 60.1
JEANIE 67.8 65.8 70.8 59.5 55.0 62.7

Unsup.
100/same 100

soft-DTW 55.6 53.9 56.1 40.9 39.7 47.3
FVM 57.8 58.0 59.7 47.9 43.1 48.8
JEANIE 60.3 61.7 63.2 51.7 46.9 52.5

100/novel 20
soft-DTW 40.2 39.7 40.8 33.7 32.9 45.5
FVM 46.2 44.5 47.0 38.1 34.0 47.1
JEANIE 48.8 47.2 50.0 41.0 39.7 51.8

Fusion

100/same 100
Weighted fusion 82.8 80.2 84.6 68.3 67.4 79.7
Finetuning unsup. 83.2 81.0 86.0 69.7 68.9 80.5
MAML-inspired fusion 85.3 83.2 87.1 72.2 71.7 82.3
Adaptation-based 85.0 82.4 86.8 71.3 69.8 81.0

100/novel 20
Weighted fusion 68.7 66.3 71.2 60.4 55.9 63.3
Finetuning unsup. 69.2 67.3 72.8 61.1 56.8 64.6
MAML-inspired fusion 72.3 69.0 74.9 63.0 58.7 67.1
Adaptation-based 71.9 68.1 73.3 62.7 56.9 66.0

Table 10: Evaluation of different testing strategies, e.g., with
supervised learning, unsupervised learning and a combina-
tion of both on Kinetics-skeleton when the model is trained
with the fusion of both supervised and unsupervised FSAR.

Train with fusion # ENs Different test cases
sup. only unsup. only sup.+unsup.

Weighted fusion 2 52.8 28.3 53.3
Finetuning unsup. 1 53.1 (↑0.6) 40.7 (↑12.4) 54.2 (↑0.9)
Adaptation-based 1 53.7 (↑1.2) 49.6 (↑21.3) 56.3 (↑3.0)
MAML-inspired fusion 1 54.0 (↑1.5) 50.3 (↑22.0) 57.0 (↑3.7)

duces a worse dictionary than JEANIE which validates the
need for factoring out jointly temporal and viewpoint nui-
sance variations from sequences.

Table 9 (Unsup.) shows that on our newly introduced
multi-view classification protocol on NTU-120, for the un-
supervised learning experiments, JEANIE outperforms the
baseline (temporal alignment only with soft-DTW) by 7%
and 8% on average on (100/same 100) and (100/novel 20)
respectively . Moreover, JEANIE outperforms the FVM by
around 4% and 3% on (100/same 100) and (100/novel 20)
respectively.

4.6 Discussion on JEANIE and FVM

For supervised learning, JEANIE outperforms FVM by
2-4% on NTU-120, and outperforms FVM by around 6% on
Kinetics-skeleton. For unsupervised learning, JEANIE im-
proves the performance by around 3% on average on NTU-
60, NTU-120 and Kinetics-skeleton. On UWA3D Multiview
Activity II, JEANIE suppresses FVM by 4% and 5% respec-
tively for supervised and unsupervised experiments. This
shows that seeking jointly the best temporal-viewpoint align-
ment is more valuable than considering viewpoint alignment
as a separate local alignment task (free range alignment per
each step of soft-DTW). By and large, FVM often performs
better than soft-DTW (temporal alignment only) by 3–5%
on average.

To explain what makes JEANIE perform well on the task
of comparing pairs of sequences, we perform some visual-
isations. To this end, we choose skeleton sequences from
UWA3D Multiview Activity II for experiments and visual-
izations of FVM and JEANIE. UWA3D Multiview Activity
II contains rich viewpoint configurations and so is perfect
for our investigations. We verify that our JEANIE is able to
find the better matching distances compared to FVM on two
following scenarios.

Matching similar actions. We choose a walking skeleton
sequence (‘a12 s01 e01 v01’) as the query sample with
more viewing angles for the camera viewpoint simulation,
and we select another walking skeleton sequence of a differ-
ent view (‘a12 s01 e01 v03’) and a running skeleton se-
quence (‘a20 s01 e01 v02’) as support samples respec-
tively.

Matching actions with similar motion trajectories.
We choose a two hand punching skeleton sequence
(‘a04 s01 e01 v01’) as the query sample with more
viewing angles for the camera viewpoint simulation, and we
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(a) walking vs. walking (dFVM =
4.60)
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dFVM = 2.68

(b) walking vs. running (dFVM =
2.68)
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dJEANIE = 8.57

(c) walking vs. walking (dJEANIE =
8.57)
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dJEANIE = 11.21

(d) walking vs. running (dJEANIE =
11.21)

Fig. 10: Visualization of FVM and JEANIE for walking
vs. walking (two different sequences) and walking vs. run-
ning. We notice that for two different action sequences in
(b), the greedy FVM finds the path with a very small dis-
tance dFVM = 2.68 but for sequences of the same action
class, FVM gives dFVM = 4.60. This is clearly suboptimal
as the within-class distance is higher then the between-class
distance (to counteract this issue, we propose JEANIE). In
contrast, our JEANIE is able to produce a smaller distance
for within-class sequences and a larger distance for between-
class sequences, which is a very important property when
comparing pairs of sequences.

select another two hand punching skeleton sequence of a
different view (‘a04 s05 e01 v02’) and a holding head
skeleton sequence (‘a10 s05 e01 v02’) as support sam-
ples respectively.

Figures 10 and 11 show the visualizations. Comparing
Figures 10a and 10b of FVM, we notice that for skeleton se-
quences from different action classes (walking vs. running),
FVM finds the path with a very small distance dFVM=2.68.
In contrast, for sequences from the same action class (walk-
ing vs. walking), FVM gives dFVM = 4.60 which is higher
than in case of within-class sequences. This is an unde-
sired effect which may result in wrong comparison deci-
sion. In contrast, in Figures 10c and 10d, our JEANIE gives
dJEANIE = 8.57 for sequences of the same action class and
dJEANIE =11.21 for sequences from different action classes,
which means that the within-class distances are smaller than
between-class distances. This is a very important property
when comparing pairs of sequences.

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 1.95

(a) two hand punching vs. two
hand punching (dFVM =1.95)

-60o-45o-30o-15o 0o 15o30o45o60o

Temporal

dFVM = 1.63

(b) two hand punching vs. holding
head (dFVM =1.63)

-60o -45o -30o -15o 0o 15o 30o 45o 60o
Temporal

dJEANIE = 2.92

(c) two hand punching vs. two
hand punching (dJEANIE =2.92)

-60o -45o -30o -15o 0o 15o 30o 45o 60o
Temporal

dJEANIE = 4.73

(d) two hand punching vs. holding
head (dJEANIE =4.73)

Fig. 11: Visualization of FVM and JEANIE for two hand
punching vs. two hand punching (two different sequences)
and two hand punching vs. holding head. We notice that
for two different action sequences in (b), the greedy FVM
finds the path which results in dFVM = 1.63 for sequences
of different action classes, yet FVM gives dFVM = 1.95

for two sequences of the same class. The within-class dis-
tance should be smaller than the between-class distance but
greedy approaches such as FVM cannot handle this require-
ment well. JEANIE gives smaller distance when compar-
ing within-class sequences compared to between-class se-
quences. This is very important for comparing sequences.

Figure 11 provides similar observations that JEANIE
produces more reasonable matching distances than FVM.

4.7 Discussion on Multi-view Action Recognition

As mentioned in Section 4.5, JEANIE yields good re-
sults especially in unsupervised learning, with the perfor-
mance gain over 5% on UWA3D Multiview Activity II and
4% on NTU-120 multi-view classification protocols. Below
we discuss the multi-view supervised FSAR.

Table 8 (Sup.) shows that adding temporal alignment
(with soft-DTW) to SGC, APPNP and S2GC improves re-
sults on UWA3D Multiview Activity II, and the big per-
formance gain is obtained via further adding the viewpoint
alignment by JEANIE. Despite the dataset is challenging
due to novel viewpoints, JEANIE performs consistently well
on all different combinations of training/testing viewpoint
settings. This is expected as our method aligns both tem-
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poral and camera viewpoint which allows a robust classifi-
cation. JEANIE outperforms FVM by 4.2% and the baseline
(temporal alignment only with soft-DTW) by 7% on average.

Influence of camera views has been explored in [105,
108] on UWA3D Multiview Activity II, and they show that
when the left view V2 and right view V3 were used for train-
ing and front view V1 for testing, the recognition accuracy
is high since the viewing angle of the front view V1 is be-
tween V2 and V3; when the left view V2 and top view V4 are
used for training and right view V3 is used for testing (or the
front view V1 and right view V3 are used for training and
top view V4 is used for testing), the recognition accuracies
are slightly lower. However, as shown in Table 8 (Sup.), our
JEANIE is able to handle the influence of viewpoints and
performs almost equally well on all 12 different view com-
binations which highlights the importance of jointly aligning
both temporal and viewpoint modes of sequences.

Table 9 (Sup.) shows the experimental results on the NTU-
120. We notice that adding more camera viewpoints to the
training process helps the multi-view classification, e.g., us-
ing bottom and center views for training and top view for
testing, and using left and center views for training and the
right view for testing, and the performance gain is more than
4% on (100/same 100). Notice that even though we test on
20 novel classes (100/novel 20) which are never used in the
training set, we still achieve 62.7% and 70.8% for multi-
view classification in horizontal/vertical camera viewpoints.

4.8 Fusion of Supervised and Unsupervised FSAR

Recall that Section 3.5 defines two baseline and two
advanced fusion strategies for supervised and unsupervised
learning due to their complementary nature.

Tables 5 (Fusion), 6 (Fusion), 7 (Fusion), and 8 (Fusion)
show that fusion improves the performance. The MAML-
inspired fusion yields 5%, 5.1%, 4.2% and 9% improve-
ments compared to the supervised FSAR only on NTU-60,
NTU-120, Kinetics-skeleton and UWA3D Multiview Activ-
ity II, respectively. This validates our assertion that JEANIE
helps design robust feature space for comparing sequences
both in supervised and unsupervised scenarios.

The adaptation-based fusion (Adaptation-based) per-
forms almost as well as the MAML-inspired fusion, within
1% difference across datasets. This is expected as MAML
algorithms are designed to learn across multiple tasks, i.e., in
our case the unsupervised reconstruction-driven loss and the
supervised loss interact together via gradient updates in such
a way that the unsupervised information (a form of cluster-
ing) is transferred to guide the supervised loss. The domain
adaptation inspired feature alignment achieves a similar ef-
fect but the transfer between unsupervised and supervised
losses occurs at the feature representation level due to fea-
ture alignment.

Training one EN with the fusion of both supervised and
unsupervised FSAR outperforms a naive fusion of scores
(Weighted fusion) from two Encoding Networks trained sep-
arately. Finetuning an unsupervised model with supervised
loss (Finetuning unsup.) outperforms the weighted fusion.

Table 10 compares different testing strategies on fu-
sion models. The MAML-inspired fusion achieves the best
results, with 1.5%, 22.0% and 3.7% improvements when
tested on supervised learning, unsupervised learning and
a fusion of both. For both adaptation-based and MAML-
inspired fusions, testing on unsupervised FSAR only (near-
est neighbor on dictionary-encoded vectors) performs close
to the results obtained from supervised FSAR only (nearest
neighbor on feature maps), i.e., within 5% difference. The
reduced performance gap between supervised and unsuper-
vised FSAR suggests that the feature space of EN is adapted
to both unsupervised and supervised FSAR.

5 Conclusions

We have proposed Joint tEmporal and cAmera view-
poiNt alIgnmEnt (JEANIE) for sequence pairs and evaluated
it on 3D skeleton sequences whose poses/camera views are
easy to manipulate in 3D. We have shown that the smooth
property of alignment jointly in temporal and viewpoint
modes is advantageous compared to the temporal alignment
alone (soft-DTW) or models that freely align viewpoint per
each temporal block without imposing the smoothness on
variations of the matching path.

JEANIE can match correctly support and query se-
quence pairs as it factors out nuisance variations, which is
essential under limited samples of novel classes. Especially,
unsupervised FSAR benefits in such a scenario, i.e., when
nuisance variations are factored out, sequences of the same
class are more likely to occupy similar/same set of atoms in
the dictionary. As supervised FSAR forms the feature space
driven by the similarity learning loss and the unsupervised
FSAR by the dictionary reconstruction-driven loss, fusing
both learning strategies has helped achieve further gains.

Our experiments have shown that using the stereo cam-
era geometry is more efficient than simply generating multi-
ple views by Euler angles. Finally, we have contributed un-
supervised, supervised and fused FSAR approaches to the
small family of FSAR for articulated 3D body joints.

Appendices

A Euler Rotations and Simulated Camera Views

Euler angles [1] are defined as successive planar rotation angles around
x, y, and z axes. For 3D coordinates, we have the following rotation
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matrices Rx, Ry and Rz :[
1 0 0
0 cosθx sinθx
0 −sinθx cosθx

]
,

[
cosθy 0 −sinθy
0 1 0

sinθy 0 cosθy

]
,

[ cosθz sinθz 0
−sinθz cosθz 0

0 0 1

]
(18)

As the resulting composite rotation matrix depends on the order of rota-
tion axes, i.e., RxRyRz ̸=RzRyRx, we also investigate the algebra
of stereo projection.

Stereo projections [2]. Suppose we have a rotation matrix R and a
translation vector t=[tx, ty , tz]T between left/right cameras (imagine
some non-existent stereo camera). Let Ml and Mr be the intrinsic
matrices of the left/right cameras. Let pl and pr be coordinates of the
left/right camera. As the origin of the right camera in the left camera
coordinates is t, we have: pr=R(pl−t) and (pl−t)T =(RTpr)T .
The plane (polar surface) formed by all points passing through t can
be expressed by (pl− t)T (pl× t) = 0. Then, pl× t = Spl where

S=

[ 0 −tz ty
tz 0 −tx
−ty tx 0

]
.

Based on the above equations, we obtain pr
TRSpl=0, and note

that RS = E is the Essential Matrix, and pT
r Epl = 0 describes the

relationship for the same physical point under the left and right cam-
era coordinate system. As E contains no internal information about the
camera, and E is based on the camera coordinates, we use a fundamen-
tal matrix F that describes the relationship for the same physical point
under the camera pixel coordinate system. The relationship between
the pixel and camera coordinates is: p∗=Mp′ and p′

r
TEp′

l=0.
Suppose the pixel coordinates of p′

l and p′
r in the pixel coordinate

system are p∗
l and p∗

r , then we can write p∗
r
T (M−1

r )TEM−1
l p∗

l =

0, where F = (M−1
r )TEM−1

l is the fundamental matrix. Thus, the
relationship for the same point in the pixel coordinate system of the
left/right camera is:

p∗
r
TFp∗

l =0. (19)

We treat 3D body joint coordinates as p∗
l . Given F, we obtain their

coordinates p∗
r in the new view.

B Graph Neural Network as a Block of Encoding
Network

GNN notations. Firstly, let G=(V,E) be a graph with the vertex set
V with nodes {v1, ..., vn}, and E are edges of the graph. Let A and
D be the adjacency and diagonal degree matrix, respectively. Let Ã=
A+I be the adjacency matrix with self-loops (identity matrix) with the
corresponding diagonal degree matrix D̃ such that D̃ii =

∑
j(A

ij+

Iij). Let S= D̃− 1
2 ÃD̃− 1

2 be the normalized adjacency matrix with
added self-loops. For the l-th layer, we use Θ(l) to denote the learnt
weight matrix, and Φ to denote the outputs from the graph networks.
Below, we list backbones used by us.

GCN [42]. GCNs learn the feature representations for the features xi

of each node over multiple layers. For the l-th layer, we denote the
input by H(l−1) and the output by H(l). Let the input (initial) node
representations be H(0) =X. By X we mean some node features for
generality of explanation. For our particular case, following the nota-
tion in Eq. (2), we would be setting H(0)=X̂ for each temporal block.
For an L-layer GCN, the output representations are given by:

ΦGCN =SH(L−1)Θ(L) where H(l)=ReLU(SH(l−1)Θ(l)). (20)

APPNP [43]. Personalized Propagation of Neural Predictions (PPNP)
and its fast approximation, APPNP, are based on the personalized PageR-
ank. Let H(0) = fΘ(X) be the input to APPNP, where fΘ(·) can
be an MLP with parameters Θ. Let the output of the l-th layer be

H(l)=(1 − α)SH(l−1)+αH(0), where α is the teleport (or restart)
probability in range (0, 1]. For an L-layer APPNP, we have:

ΦAPPNP =(1−α)SHL+αH(0). (21)

SGC [127] & S2GC [154]. SGC captures the L-hops neighborhood in
the graph by the L-th power of the transition matrix used as a spectral
filter. For an L-layer SGC, we obtain:

ΦSGC =SLXΘ. (22)

Based on a modified Markov Diffusion Kernel, Simple Spectral
Graph Convolution (S2GC) is the summation over l-hops, l=1, ..., L.
The output of S2GC is:

ΦS2GC =
1

L

L∑
l=1

((1−α)SlX+αX)Θ. (23)

In case of APPNP, SGC and S2GC, |FGNN |=0 because we do
not use their learnable parameters Θ (i.e., think Θ is set as the identity
matrix). The GNN outputs are further passes into a Transformer and
an FC layer, which returns Ψ ∈Rd′×K×K′×τ query feature maps and
Ψ ′∈Rd′×τ ′

support feature maps.

C Feature Coding and Dictionary Learning

The core idea of feature coding is to reconstruct a feature vector
with codewords by solving a least squares based optimization prob-
lem with constraints imposed on the codewords. The full codewords
(a.k.a. elements or atoms) compose a dictionary. Atoms in the dictio-
nary are not required to be orthogonal and the dictionary may be an
over-complete (the number of atoms is larger than their dimension).
For most feature coding algorithms, only a subset of codewords are
chosen by the solver to represent a feature vector, and thus the coding
vector α may be sparse, i.e., the responses are zeros on those code-
words which are not chosen. In what follows, we however replace the
Euclidean distance with the JEANIE measure.

The main difference among various feature coding methods lies
in the constraint term. Alternatively, we obtain α by defining some
specific function α(Ψi;M) that implicitly realizes the regularization
term. The choice of Ω(αi,M ,Ψi) realizes some desired constraints
via regularization κ > 0, e.g., Ω(αi,M ,Ψi) = ∥αi∥1 encourages
sparsity of α.

C.1 Feature Coding

Below we detail different feature coders we explore in our work,
i.e., Hard Assignment (HA) [14], Sparse Coding (SC) [54, 132], Non-
negative Sparse Coding (SC+) [36], Locality-constrained Linear Cod-
ing (LLC) [104], Soft Assignment (SA) [6, 27], and Locality-constrained
Soft Assignment (LcSA) [46, 64]. LcSA is our default feature coder
due to its simplicity and strong performance.

Hard Assignment (HA). This encoder assigns each Ψ to its nearest m
by solving the following optimisation problem:

α(Ψ) = argmin
α′∈{0,1}k

d2JEANIE(Ψ ,Mα′), (24)

s.t. ∥α′∥1 = 1.

Sparse Coding (SC) & Non-negative Sparse Coding (SC+). SC en-
codes eachΨ as a sparse linear combination of atomsM by optimising
the following objective:

α(Ψ) = argmin
α′

d2JEANIE(Ψ ,Mα′) + κ∥α′∥1, (25)
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whereas SC+ additionally imposes a constraint that α′ ≥ 0. Both SC
and SC+ encode each Ψ on a subspace ofM of size controlled by the
sparsity term.

Locality-constrained Linear Coding (LLC). The LLC encoder uses
the following criteria for each Ψ :

α(Ψ) = argmin
α′

d2JEANIE(Ψ ,Mα′) + κ∥d⊙α∥22, (26)

s.t. 1Tα′ = 1,

where ⊙ denotes the element-wise multiplication and d ∈ Rk is the
non-locality penalty that penalises selection of dictionary atoms that
are far from Ψ . Specifically,

d =

[
exp

d2
JEANIE(Ψ,m1)

σ , ..., exp
d2

JEANIE(Ψ,mk)

σ

]T
, (27)

where σ ≥ 0 adjusts the weight decay speed for the non-locality
penalty. We further normalize d to be between 0 and 1. The constraint
1Tα′=1 follows the shift-invariant requirements of the LLC encoder.

Soft Assignment (SA) & Locality-constrained Soft Assignment (LcSA).
SA expresses each Ψ as the membership probability of Ψ belonging
to each m in M , a concept known from the MLE of Gaussian Mix-
ture Models (GMM). SA is derived under equal mixing probability and
shared variance σ of GMM components. SA is a closed-form term:

α′(Ψ ;M ,σ)=
1

Z(Ψ ;M ,σ)

[
e−

d2
JEANIE(Ψ,m1)

2σ2 , ..., e−
d2

JEANIE(Ψ,mk∥)

2σ2

]
T,

where Z(Ψ ;M ,σ)=
∑

k′=1,...,k

e−
1

2σ2 d2
JEANIE(Ψ ,mk′ ). (28)

The above model usually yields largest values of α′
i for anchor mi

in M that is a close JEANIE neighbor of Ψ . However, even for mi

that is far from Ψ , α′
i > 0. For this reason, SA is only approximately

locality-constrained.
LcSA admits the locality-constrained membership probability of

the form:

α(Ψ) = π(α′(Ψ ;MNN(Ψ ;k′))), (29)

whereMNN(Ψ ;k′) returns k′ nearest neighbors ofΨ inM based on the
JEANIE measure, whereas π(·) projects back coefficients ofα′ intoα
at positions following original indexes of nearest neighbors in dictio-
naryM . Remaining locations in α are zeroed. LcSA forms subspaces
of size k′.

C.2 Dictionary Learning

For all the above listed feature coding methods, we employ a sim-
ple dictionary learning objective which follows Eq. (16). We assume
some evaluated/fixed dictionary-coded vectors as a coding matrixA≡
[α1, ...,αN′ ] (N ′ is the number of samples per mini-batch), and we
compute:

M = argmin
M ′

N′∑
i=1

d2JEANIE(Ψi,M
′αi). (30)

Notice that for fixed A and fixed feature matrices Ψ , the regulariza-
tion term becomes a constant. For the dictionary learning step, we de-
tach Ψ and α, and run 10 iterations of gradient descent per mini-batch
w.r.t.M .

Algorithm 4 Fusion of Supervised and Unsupervised FSAR
by Feature Maps Alignment (one training iteration).
Input: Γ ≡ {X b}b∈IB

∪ {X ′
b,n,z}b∈IB

n∈IN
z∈IZ

: query/support blocks in

batch; F : EN parameters; M and A; alpha iter and dic iter:
numbers of iterations for updating A and M ; ω, ωDL and ωEN: the
learning rate for A,M and F respectively; B: size of the mini-batch;
λ: regularization parameter.

1: Υ ≡ {Ψb}b∈IB
∪{Ψ ′

b,n,z}b∈IB
n∈IN
z∈IZ

where

{
Ψb=f∗(X b;F)

Ψ ′
b,n,z=f∗(X ′

b,n,z;F)

(obtain feature maps for global parameters F)
2: F̂ := F (copy parameters of EN)
3: (F̂ ,M) = Algorithm2(Υ, F̂ ,M ,A, (unsupervised FSAR)

alpha iter,dic iter, ω, ωDL, ωEN)

4: Υ̂ ≡ {Ψ̂b}b∈IB
∪{Ψ̂ ′

b,n,z}b∈IB
n∈IN
z∈IZ

where

{
Ψ̂b=f∗(X b; F̂)

Ψ̂ ′
b,n,z=f∗(X ′

b,n,z; F̂)

(obtain feature maps for parameters F̂ from the unsupervised step)
5: Lalign =

∑N′

i=1 d2JEANIE(Ψi, Ψ̂i) (alignment of sup. & unsup. maps)
where N ′= |Υ |, Ψ ∈Υ, Ψ̂ ∈ Υ̂

6: d+=[dJEANIE(Ψb,Ψ
′
b,1,z)]b∈IB

z∈IZ

(within-class distance)

7: d−=[dJEANIE(Ψb,Ψ
′
b,n,z)]b∈IB

n∈IN\{1}
z∈IZ

(between-class distance)

8: F :=F−ωEN∇F
(
l(d+,d−) + λLalign

)
Output: F andM

Table 11: Experimental results on NTU-120 (S2GC back-
bone). All methods enjoy temporal alignment by soft-DTW
or JEANIE (joint temporal and viewpoint alignment). We
use the ℓ2 norm for comparing the codes in unsupervised
setting with soft-DTW. For unsupervised JEANIE, the dis-
tance for comparing the codes is indicated.

viewpoint align. 20 40 60 80 100simulation

Unsup.
+Transf.

soft-DTW (HA) - T 11.2 16.3 19.0 25.8 30.9
soft-DTW (SC) - T 12.1 17.4 21.4 27.0 32.7
soft-DTW (SC+) - T 11.8 17.0 21.2 26.5 32.2
soft-DTW (LLC) - T 14.0 18.7 23.1 29.3 34.1
soft-DTW (SA) - T 15.0 20.1 24.3 30.5 38.3
soft-DTW (LcSA) - T 15.7 21.4 25.2 32.0 40.2
JEANIE (LLC)–ℓ1 CamVPC T+2V 18.0 23.8 30.5 36.3 43.0
JEANIE (LLC)–ℓ2 CamVPC T+2V 18.3 24.2 30.8 36.0 43.3
JEANIE (LLC)–HIK CamVPC T+2V 18.3 24.0 31.0 36.3 43.0
JEANIE (LLC)–CSK CamVPC T+2V 17.8 24.0 30.8 36.3 43.0
JEANIE (LcSA)–ℓ1 CamVPC T+2V 18.3 24.5 32.0 39.5 48.0
JEANIE (LcSA)–ℓ2 CamVPC T+2V 18.6 25.0 32.2 40.0 48.5
JEANIE (LcSA)–HIK CamVPC T+2V 18.3 24.8 32.2 39.6 48.0
JEANIE (LcSA)–CSK CamVPC T+2V 18.6 25.2 32.0 39.6 48.5
FVM (LcSA)–CSK CamVPC T+2V 17.5 22.4 30.7 36.1 44.5

Table 12: Experiments on 2D and 3D Kinetics-skeleton. We
use the ℓ2 norm for comparing the codes in unsupervised
setting with soft-DTW. For unsupervised JEANIE, the dis-
tance for comparing the codes is indicated.

viewpoint alignment 2D skel. 3D skel.simulation

Unsup.
+Transf.

soft-DTW(LLC) - T 18.7 21.3
soft-DTW(SA) - T 18.7 21.8
soft-DTW(LcSA) - T 19.3 22.2
JEANIE (LcSA)–ℓ1 CamVPC T+2V - 28.0
JEANIE (LcSA)–ℓ2 CamVPC T+2V - 28.3
JEANIE (LcSA)–HIK CamVPC T+2V - 28.3
JEANIE (LcSA)–CSK CamVPC T+2V - 28.3
FVM (LcSA)–ℓ2 CamVPC T+2V - 25.1
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Supervised
Unsupervised

MAML-inspired Fusionalpha iter: 100 50 30 10 10 10 10
dic iter: 10 10 10 10 30 50 100

k=1024 2048 4096 8192

Time (s) 1.95 26.99 7.94 11.76 24.06 42.72 22.48 21.10 34.77 43.53 72.56 38.77
Accuracy (%) 64.6 62.6 58.8 62.3 62.6 59.2 59.5 58.5 58.8 61.3 61.9 72.0

Table 13: Time cost (seconds) per 10 episodes vs. performance (%) on MSRAction3D. We set stride step S=5 and M=10.
Dictionary size k=4096 unless indicated otherwise, and τ∗=30. See the text for remarks about a relatively larger number
of epochs required for the convergence of supervised FSAR compared to the unsupervised FSAR.

D Fusion by Alignment

Fusion by alignment of supervised and unsupervised feature maps.
Inspired by domain adaptation, Algorithm 4 performs a fusion of su-
pervised and unsupervised FSAR by alignment of feature maps ob-
tained with supervised and unsupervised FSAR. Specifically, we start
by generating representations with several viewpoints. For each mini-
batch of size B we form a set with N ′ feature maps which are passed
to Algorithm 2. Subsequently, from EN parameters F we obtain pa-
rameters F̂ that help accommodate unsupervised reconstruction-driven
learning. We compute “unsupervised” feature maps for such parame-
ters and encourage “supervised” feature maps to align with them based
on the JEANIE measure. Parameter λ ≥ 0 controls the strength of
alignment. For the supervised step, we use the supervised loss from
Eq. (14) and (15). Finally, we update EN parameters F .

E Additional Results on Unsupervised FSAR

Tables 11 and 12 below show additional results on the NTU-120,
the 2D and 3D Kinetics-skeleton datasets.

F Training Speeds

Table 13 investigates supervised, unsupervised and fusion strate-
gies in terms of speed. While supervised training appears to be faster,
it also takes more episodes to converge, e.g., 400 vs.80. Worth not-
ing is that the unsupervised strategy is a non-optimized code whose
dictionary learning and code assignment can be parallelized to bring
computations times significantly down.

G Inference Time

Table 14: A comparison of training/inference time (per
query) on NTU-60 (#training classes = 10).

Training time (s) Inference time (s) Total inference Acc. (%)
time (s)

soft-DTWaug 0.098 0.019 178.5 56.8
TAPaug 0.124 0.024 225.5 57.6
JEANIE 0.099 0.020 187.0 65.0

Table 14 below compares training and inference times per query
on Titan RTX 2090. For soft-DTW, each query is augmented by K×
K′ = 9 viewpoints. In the test time, we average match distance over
K×K′=9 viewpoints of each test query (this is a popular standard test
augmentation strategy) w.r.t. support samples. This strategy is denoted
as soft-DTWaug. We also apply the above strategy to TAP (denoted
as TAPaug). JEANIE also uses K×K′ = 9 viewpoints per query. We

exclude the time of applying viewpoint generation as skeletons can
be pre-processed at once (1.6h with non-optimized CPU code) and
stored for the future use. Among methods which use multiple view-
points, JEANIE outperforms soft-DTWaug and TAPaug by 8.2% and
7.4% respectively. JEANIE outperforms ordinary soft-DTW and TAP
by 11.3% and 10.8%. For soft-DTWaug and TAPaug, their total training
and testing were 5× and 9× slowed compared to counterpart soft-DTW
and TAP. This is expected as they had to deal with K×K′ = 9 more
samples. We tried also parallel JEANIE. Training JEANIEpar with 4
Titan RTX 2090 took 44h, the total inference was 48s.

H Training and Evaluation Protocols for Skeletal FSAR

As MSRAction3D, 3D Action Pairs, and UWA3D Activity have
not been used in FSAR, we created 10 training/testing splits by choos-
ing half of class concepts for training, and half for testing per split
per dataset. Training splits were further subdivided for crossvalidation.
Below, we explain the selection process.

FSAR (MSRAction3D). As this dataset contains 20 action classes, we
randomly choose 10 action classes for training and the remaining 10
for testing. We repeat this sampling process 10 times to form in total
10 training/test splits. For each split, we have 5-way and 10-way exper-
imental settings. The overall performance on this dataset is computed
by averaging the performance over 10 splits.

FSAR (3D Action Pairs). This dataset has in total 6 action pairs (12
action classes), each pair of action has very similar motion trajecto-
ries, e.g., pick up a box and put down a box. We randomly choose 3
action pairs to form a training set (6 action classes) and the half ac-
tion pairs for the test set, and in total there are

(
n
k

)
=
(
6
3

)
=20 different

combinations of train/test splits. As our training/test splits are based on
action pairs, we are able to test whether the algorithm is able to classify
unseen action pairs that share similar motion trajectories. We use the
5-way protocol and average over all 20 splits.

FSAR (UWA3D Activity). This dataset has 30 action classes. We ran-
domly choose 15 action classes for training and the rest action classes
for testing. We form in total 10 train/test splits, and we use 5-way and
10-way protocols on this dataset, averaged over all 10 splits.

Kinetics-skeleton. In our experiments, we follow the training and eval-
uation protocol from work [71, 66]. We use the first 120 actions out of
400, with 100 samples per class. The numbers of training, validation
and test categories are 80, 20 and 20, respectively. Below is the break-
down of 120 categories into training, validation and test categories:

i. Train: [1, 2, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 43, 47, 48,
49, 50, 51, 52, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 95, 97,
102, 105, 109, 110, 111, 113, 117, 118, 119]

ii. Validation: [4, 7, 10, 36, 37, 42, 44, 45, 55, 56, 61, 88, 94, 98, 103,
104, 106, 108, 116, 120]

iii. Test:[3, 22, 35, 46, 53, 54, 57, 60, 62, 80, 81, 92, 96, 99, 100, 101,
107, 112, 114, 115]
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(a) JEANIE, temporal blocks (test accuracy: 80.28%)
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(b) Soft-DTW, temporal blocks (test accuracy: 77.51%)
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(c) JEANIE, average-pooled temp. blocks (test accuracy: 80.28%)
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(d) Soft-DTW, average-pooled temp. blocks (test accuracy: 77.51%)
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(e) JEANIE, temporal blocks (dots) & average-pooled temp.
blocks (stars) overlaid (test accuracy: 80.28%)
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(f) Soft-DTW, temporal blocks (dots) & average-pooled temp.
blocks (stars) overlaid (test accuracy: 77.51%)

Fig. 12: UMAP-based visualizations of (left) JEANIE and (right) soft-DTW are generated using models trained on MSRAc-
tion3D. The test set is used for the visualisations. We visualize temporal block representations (Fig. 12a and 12b), and
average-pooled over blocks (along the temporal mode) feature representations (one per video) (Fig. 12c and 12d). Figures
12e and 12f overlay the figures above for better visualisation. Note that each colored dot represents a temporal block fea-
ture representation, whereas each star represents a video feature representation after average pooling over blocks. JEANIE
achieves somewhat more compact and better-separated class-wise clusters compared to soft-DTW.
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I Visualisation based on UMAP

We select the test set of MSRAction3D to showcase UMAP vi-
sualizations [73] of (i) temporal block features and (ii) average-pooled
features along the temporal dimension for both JEANIE and soft-DTW.
We use pre-trained models with the test accuracies 80.28% and 77.51%
for JEANIE and soft-DTW, respectively. Figure 12 illustrates the com-
parisons. Each dot represents a temporal block feature, and each star
denotes a video feature representation (after average pooling along the
temporal mode). The figure shows that JEANIE appears to yield more
compact and more separated clusters in comparison to soft-DTW.
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