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Abstract Understanding human actions in videos requires
more than raw pixel analysis; it relies on high-level seman-
tic reasoning and effective integration of multimodal fea-
tures. We propose a deep translational action recognition
framework that enhances recognition accuracy by jointly
predicting action concepts and auxiliary features from RGB
video frames. At test time, hallucination streams infer miss-
ing cues, enriching feature representations without increas-
ing computational overhead. To focus on action-relevant re-
gions beyond raw pixels, we introduce two novel domain-
specific descriptors. Object Detection Features (ODF) ag-
gregate outputs from multiple object detectors to capture
contextual cues, while Saliency Detection Features (SDF)
highlight spatial and intensity patterns crucial for action
recognition. Our framework seamlessly integrates these de-
scriptors with auxiliary modalities such as optical flow, Im-
proved Dense Trajectories, skeleton data, and audio cues.
It remains compatible with state-of-the-art architectures, in-
cluding I3D, AssembleNet, Video Transformer Network,
FASTER, and recent models like VideoMAE V2 and In-
ternVideo2. To handle uncertainty in auxiliary features, we
incorporate aleatoric uncertainty modeling in the hallucina-
tion step and introduce a robust loss function to mitigate
feature noise. Our multimodal self-supervised action recog-
nition framework achieves state-of-the-art performance on
multiple benchmarks, including Kinetics-400, Kinetics-600,
and Something-Something V2, demonstrating its effective-
ness in capturing fine-grained action dynamics.
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Fig. 1: We use object detectors and saliency maps to identify action-
relevant regions within video frames. Fig. 1a shows bounding boxes
from four detectors. The faster R-CNN detector with ResNet101 is fo-
cused on human-centric actions, such as stand, watch, talk, etc.. The
other three detectors identify objects, such as oven, sink, clock, etc..
Fig. 1b shows how the MNL saliency detector [185] emphasizes spa-
tial regions. Fig. 1c shows how the ACLNet saliency detector [184]
highlights motion regions.

1 Introduction

Action recognition (AR) has evolved significantly, tran-
sitioning from handcrafted feature-based methods [30, 127,
80, 148, 149, 150, 134, 29, 112, 113, 152, 155, 156] to
deep learning-driven approaches [133, 144, 44, 15, 153, 18,
189, 167]. Early techniques such as Histogram of Gradi-
ents (HOG) [48, 80], Histogram of Optical Flow (HOF)
[30], and Improved Dense Trajectories (IDT) [149, 150]
effectively captured spatial and temporal patterns but suf-
fered from high computational costs and poor scalability.
The emergence of deep learning models, particularly two-
stream networks [133] and Inflated 3D CNNs (I3D) [15],
introduced significant improvements by learning end-to-end
representations from raw RGB and optical flow. However,
despite these advancements, action recognition remains an
open challenge due to the absence of well-established mod-
els that can effectively address three fundamental issues: (i)
incomplete and imbalanced multimodal data, (ii) inefficient
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Fig. 2: We use six mainstream action recognition (AR) backbones: I3D, AssembleNet/AssembleNet++, Video Transformer Network (VTN), the
lightweight FASTER framework, and recent models like VideoMAE V2 and InternVideo2. The prediction layer (e.g., the final 1D covolutional
layer of I3D) is removed from each backbone, and the intermediate representation (e.g., the pooled spatiotemporal token embeddings of VideoMAE
V2 / InternVideo2 encoder), X(rgb), is passed into the following streams: Bag-of-Words (BoW), Fisher Vector (FV), Optical Flow Features (OFF),
and High Abstraction Features (HAF), followed by the Power Normalization (PN) block (dashed black). The OFF stream is supervised by features
extracted from the pre-trained I3D optical flow network (on Kinetics-400). Additionally, we introduce new feature streams: Object Detection
Features (ODF) (from detector-based descriptors DET1, . . . ,DET4), Saliency Detection Features (SDF) (from saliency-based descriptors SAL1
and SAL2), spatio-temporal GCN-encoded Skeleton Features (GSF), and Audio Features (AF) (dashed blue). The GSF stream is supervised by
skeleton features from the pre-trained ST-GCN (on Kinetics-Skeletons), and the AF stream is supervised by audio features from SoundNet (pre-
trained on 2-million unlabeled videos). The resulting feature vectors, ψ̃ψψ(·), where ((·) denotes the stream name, are aggregated (⊕), followed by
Sketching (SK) block, and passed into the Prediction Network (PredNet). The ODF and SDF features are reweighted by corresponding weights
w(·) (magenta lines)). Green dashed arrows show the feature hallucination process. During training, we use either MSE loss or our uncertainty
learning loss (dashed red) for hallucination streams. The Covariance Estimation Network (CENet) takes the concatenated hallucinated features and
produces a precision matrix ΩΩΩ (the inverse of the covariance matrix). This matrix, along with the hallucinated features ψ̃ψψ and ground truth features
ψψψ ′, is fed into the uncertainty learning module. During testing, the hallucinated features ψ̃ψψ are input into PredNet to obtain the predicted labels y.

feature fusion across modalities, and (iii) the lack of struc-
tured motion descriptors in deep learning models.

A key limitation of existing robust AR models is their
dependence on multimodal data, such as RGB, optical flow,
and skeletons. While multimodal learning can enhance ac-
tion recognition performance by using complementary cues
[35], most benchmark datasets only provide RGB videos,
leading to missing or imbalanced modalities. Many datasets
do not provide all possible modalities. For example, some
datasets only contain RGB videos, while others may include
skeleton or depth data but lack optical flow. This incon-
sistency forces models to either rely exclusively on RGB-
based representations, leading to suboptimal motion reason-
ing, or incorporate handcrafted features like IDT, which,
despite their effectiveness, are computationally prohibitive
and incompatible with modern deep learning frameworks
[47, 23, 24, 151, 27]. These constraints prevent existing
models from fully exploiting multimodal cues in a scalable
and efficient manner [47, 23, 24, 151, 27, 165, 153].

Beyond the challenge of missing modalities, current fea-
ture fusion strategies suffer from fundamental inefficien-
cies [35]. Late fusion techniques process each modality
separately before combining predictions, failing to model
fine-grained cross-modal interactions. Early fusion, on the
other hand, directly combines raw features, often introduc-
ing modality misalignment and redundant information. Ex-
isting hallucination-based approaches [162, 141, 157] at-
tempt to synthesize missing modalities (e.g., estimating op-
tical flow), but they remain constrained to a fixed set of fea-
tures and fail to generalize across datasets with diverse ac-

tion categories (e.g., DEEP-HAL [162]). Even when multi-
ple modalities are present, they may not be equally available
or useful. Some modalities might be noisy, sparse, or unre-
liable. Consequently, there is no well-established approach
that efficiently integrates multimodal information while han-
dling missing data in a robust and scalable manner.

Moreover, modern deep learning models [170] primar-
ily focus on RGB and text-based semantics while neglecting
motion-specific domain knowledge [162, 157, 18, 37, 36].
Unlike handcrafted methods that explicitly model motion
dynamics, deep networks, especially 3D CNNs [15, 125,
124], Vision Transformers [91, 116, 181, 135] and Masked
Autoencoder (MAE) [143, 154], learn representations im-
plicitly, often discarding structured motion cues that are crit-
ical for distinguishing similar actions, such as trajectories or
motion boundaries [150]. While handcrafted descriptors like
IDT effectively capture motion, they rely on fixed heuris-
tics and are computationally expensive. Deep learning mod-
els, in contrast, lack explicit mechanisms to track movement
over time, making them susceptible to failures in fast or sub-
tle motion scenarios [18]. Additionally, they require massive
amounts of data to learn motion cues [37, 36], which is im-
practical for many real-world applications. This fundamen-
tal gap in motion reasoning limits model performance, par-
ticularly in challenging scenarios where appearance-based
features alone are insufficient. The trade-off between ef-
ficiency and accuracy remains unresolved, as highly ex-
pressive models demand extensive feature engineering and
computationally expensive training, hindering large-scale
deployment[107, 5, 11, 101, 41, 178, 125, 124, 111].
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To address these limitations, we propose a self-
supervised multimodal framework that enhances feature in-
tegration, reduces reliance on handcrafted descriptors, and
enables robust action recognition even in incomplete multi-
modal settings. Our approach introduces two novel domain-
specific descriptors. First, Object Detection Features (ODF)
capture action-relevant entities and contextual information
using object detection outputs, such as those from Faster R-
CNN [120], improving spatial awareness. Figure 1a shows
examples of bounding boxes detected by four object de-
tectors. Second, Saliency Detection Features (SDF) extract
salient motion regions, helping the model focus on task-
relevant patterns and improving action recognition accuracy.
Figures 1b and 1c show saliency maps from region-wise
and temporal saliency detectors. These descriptors serve as
semantic priors, guiding our model to attend to informa-
tive regions in video frames. Unlike existing methods that
rely solely on RGB and optical flow, our approach dynami-
cally integrates motion and structural cues into deep learning
pipelines. More importantly, ODF and SDF introduce struc-
tured, learnable motion-aware features that enhance deep
learning models with explicit spatial and motion cues while
maintaining computational efficiency.

Beyond feature enhancement, our framework incorpo-
rates a self-supervised hallucination mechanism, allowing
the model to synthesize missing modalities (e.g., skeleton
data [179] and audio cues [6], etc.) at test time. This en-
ables robust performance even when certain modalities are
absent, making the model scalable and practical. Addition-
ally, we introduce aleatoric uncertainty modeling, which
mitigates feature noise and ensures stable predictions when
auxiliary data is unreliable. By addressing the three fun-
damental challenges of multimodal action recognition, our
framework offers a generalizable, efficient, and scalable
solution. Figure 2 provides a conceptual overview of our
approach. Our method achieves state-of-the-art results on
benchmark datasets such as Kinetics-400, Kinetics-600,
and Something-Something V2, demonstrating its ability to
bridge the gap between handcrafted and deep learning-based
approaches. Our contributions can be summarized as fol-
lows:

i. We introduce a novel multimodal action recognition
framework that integrates diverse auxiliary features
while reducing the reliance on computationally expen-
sive handcrafted descriptors during inference.

ii. We propose Object Detection Features (ODF) and
Saliency Detection Features (SDF) as domain-specific
descriptors that guide the model toward action-relevant
regions, improving motion reasoning and action recog-
nition accuracy.

iii. We develop a self-supervised hallucination mecha-
nism to synthesize missing cues at test time, addressing
the challenge of incomplete multimodal data.

iv. We incorporate aleatoric uncertainty modeling and a
robust loss function to mitigate feature noise, enhancing
performance on fine-grained action recognition tasks.

2 Related Work

We review early video descriptors, deep learning
pipelines, object and human detectors, saliency and audio
features, as well as uncertainty in vision and Power Nor-
malization (PN) for mitigating feature burstiness in Action
Recognition (AR).

2.1 Early Video Descriptors and Encoding Schemes

Early video descriptors. Early approaches relied on spatio-
temporal interest point detectors [94, 38, 16, 173, 95, 148]
and spatio-temporal descriptors [30, 127, 146, 148, 149,
150] which capture various appearance and motion statis-
tics. However, spatio-temporal interest point detectors strug-
gle to capture long-term motion patterns. To address this, the
Dense Trajectory (DT) [148] approach is developed, which
densely samples feature points in each frame and tracks
them across the video frames using optical flow. Multiple
descriptors are then extracted along these trajectories to cap-
ture shape, appearance and motion cues. Despite its util-
ity, DT cannot account for camera motion. The Improved
Dense Trajectory (IDT) approach [150, 149] overcomes this
limitation by estimating and removing global background
motion caused by the camera. Additionally, IDT filters out
inconsistent matches using a human detector. For spatio-
temporal descriptors, IDT uses HOG [48], HOF [30] and
MBH [149]. HOG [48] contains statistics of the amplitude
of image gradients w.r.t. the gradient orientation, thus it cap-
tures the static appearance cues. In contrast, HOF [30] cap-
tures histograms of optical flow while MBH [149] captures
derivatives of the optical flow, thus it is highly resilient to
the global camera motion whose cues cancel out due to
derivatives. Thus, HOF and MBH contain the zero- and first-
order optical flow statistics. Other notable spatio-temporal
descriptors include HOG-3D [80], SIFT3D [127], SURF3D
[173] and LTP [182].
BoW/FV encoding. The Bag-of-Words (BoW) method
[134, 29] creates a visual vocabulary using k-means cluster-
ing, where local descriptors are assigned to specific clusters.
Variants include Soft Assignment (SA) [50, 83] and Local-
ized Soft Assignment (LcSA) [99, 87]. Following DEEP-
HAL [162], we use BoW encoding [29] with Power Nor-
malization [87]. Additionally, we use Fisher Vectors (FV)
[112, 113], which capture first- and second-order statistics
of local descriptors assigned to Gaussian Mixture Model
(GMM) clusters.



4 Lei Wang, Piotr Koniusz

2.2 Deep Learning in Action Recognition

CNN-based. Early AR models using CNNs relied on frame-
wise features with average pooling [73], which discarded
the temporal order. To address this, frame-wise CNN scores
are input to LSTMs [39], while two-stream networks [133]
compute separate representations for RGB frames and 10
stacked optical flow frames. Spatio-temporal patterns are
later modeled using 3D CNN filters [72, 144, 44, 147].

While two-stream networks [133] overlook temporal or-
der, approaches like rank pooling [46, 47, 24, 151] and
higher-order pooling [23, 82, 86, 42, 84, 165] gained pop-
ularity. The I3D model [15] introduces spatio-temporal ‘in-
flation’, where 2D CNN filters pre-trained on ImageNet-
1K [34] are adapted to 3D, incorporating temporal pool-
ing. PAN [183] proposes the Persistence of Appearance mo-
tion cue, which distills motion information directly from ad-
jacent RGB frames. A bootstrapping approach [100] uses
long-range temporal context attention, while another [93]
introduces a graph attention model to explore semantic re-
lationships. Slow-I-Fast-P (SIFP) [96] uses dual pathways
for compressed AR, with sparse sampling on I-frames and
dense sampling using pseudo optical flow clips.
Optical flow. Optical flow remains a cornerstone in AR
[133, 15, 46, 151, 161]. Early methods tackle small displace-
ments [62, 110], while new methods address larger displace-
ments, such as Large Displacement Optical Flow (LDOF)
[10]. Recent methods involve non-rigid descriptor or seg-
ment matching [172, 9] and edge-preserving interpolation
[121]. We use LDOF [110] for optical flow estimation.
GCNs for skeletons. Graph Convolutional Networks
(GCNs) have shown great success in skeletal AR [131,
13, 129, 20, 19, 128, 163, 158, 159, 164, 153]. These
methods construct skeleton graphs, where joints are ver-
tices, and bones are edges, enabling GCNs to model de-
pendencies [78]. The spatio-temporal GCN (ST-GCN) [179]
simultaneously learns spatial and temporal features. Sub-
sequent advancements include Actional-Structural GCN
(AS-GCN) [97], Context-Aware GCN (CA-GCN) [186],
Shift-GCN [21], dynamic directed GCN [90], part-level
GCN [65], and other specialized GCNs [109, 130, 2, 118]. In
this work, we use pre-trained ST-GCN on Kinetics-skeleton
to extract skeleton features for feature hallucination.
NAS. AssembleNet [125] uses Neural Architecture Search
(NAS) to identify an optimal architecture for spatio-
temporal feature interactions in AR. AssembleNet++ [124]
extends this by dynamically learning attention weights to ex-
plore interactions between appearance, motion, and spatial
object information. We use AssembleNet++ in this work.
Transformer-based. The AR field is increasingly adopt-
ing transformer-based models [41]. Pure transformer ar-
chitectures have achieved state-of-the-art accuracy on ma-
jor video recognition benchmarks [5, 107, 11, 101, 81,

160] by globally connecting spatial and temporal patches.
Lightweight transformers, such as the Video Transformer
Network (VTN) [91], enable real-time AR on low-power de-
vices, including edge computing scenarios. Recent advance-
ments include TubeViT [116], Side4Video [181], and Om-
niVec2 [135], which enhance video understanding via mul-
timodal and multitask learning.
Lightweight models. While recent methods [107, 5, 11,
101, 41, 178], such as AssembleNet [125, 124] and Mo-
tionformer [111], have achieved state-of-the-art perfor-
mance in AR, their high computational makes them un-
suitable for real-time or resource-constrained applications.
To address this, lightweight models like SqueezeNet [68],
Xception [26], ShuffleNet [103], EfficientNet [140], Mo-
bileNet [64], as well as frameworks like FASTER [188]
and Video Transformer Networks (VTN) [91], have been
proposed to mitigate these challenges. Recent efforts have
focused on optimizing architectures at the clip level [64]
to further reduce computational overhead. Given the strong
temporal structure and high redundancy in video data,
the FASTER framework [188] tackles these challenges by
emphasizing the temporal aggregation stage. By using a
lightweight model, it effectively captures scene changes
over time while minimizing redundant computations.
Masked vision modeling. Self-supervised video pre-
training methods like VideoMAE [143] and its succes-
sor VideoMAE V2 [154] have significantly improved tasks
like action classification and spatial-temporal detection.
VideoMAE uses high-ratio video tube masking to en-
hance representation learning. VideoMAE V2 introduces
dual masking to reduce decoder input length, improving
both computational efficiency and learning performance. In-
ternVideo2 [170] further advances AR through multi-stage
training on web and YouTube datasets, achieving state-of-
the-art performance across 60+ video and audio tasks.

Building on [162, 157], we investigate the use of various
backbones, including AssembleNet++, lightweight VTN,
FASTER, and recent advancements such as VideoMAE V2
and InternVideo2. These backbones are used to hallucinate
computationally expensive handcrafted features, such as op-
tical flow and skeleton features, effectively reducing the
need for explicit feature extraction during testing stage.

2.3 Object and Saliency Detectors

Object detectors. Modern deep learning-based object de-
tection methods include Region-based Convolutional Neural
Networks (R-CNN) [54], its faster variants [53, 120], mask-
based extensions [58], and the YOLO family [119], includ-
ing YOLO v2 and YOLO v3, which prioritize efficiency by
using a single network architecture.
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In this work, we use the faster R-CNN detector [120]
with several backbones: (i) Inception V2 [139], (ii) Incep-
tion ResNet V2 [138], (iii) ResNet101 [59] and (iv) NAS-
Net [191]. Among these, Inception V2, Inception ResNet
V2, and NASNet are pre-trained on the COCO dataset [98],
enabling detection across 91 object classes. These models
are particularly adept at summarizing environments, such as
indoor settings, and associating scene context with actions.
ResNet101, on the other hand, is pre-trained on the AVA
v2.1 dataset [56], which includes 80 human actions, making
it highly suited for human-centric AR tasks. In addition to
detection scores, each bounding box is further described us-
ing ImageNet-1K [123] scores from a pre-trained Inception
ResNet V2 model [138].
Saliency detectors. Saliency detectors identify image re-
gions that correlate with human visual attention, typically
represented as saliency maps. Deep learning-based saliency
models [166, 63] outperform traditional methods [190] but
often require pixel-wise annotations. Recent advancements
include MNL [185] (a weakly-supervised model), RFCN
[166] (a fully-supervised model), and a Robust Background
Detector (RBD) [190] (refer to [8] for a detailed survey).

For spatial saliency, we use MNL [185], which is trained
on noisy labels derived from weak or unsupervised hand-
crafted saliency models. For temporal saliency, we rely on
ACLNet [184], a CNN-LSTM-based architecture designed
to capture dynamic saliency patterns over time.

2.4 Audio Modality in Action Recognition

The visual and audio modalities are highly correlated
yet contain distinct and complementary information. Nu-
merous studies [1, 175, 136, 169, 49] have explored the
integration of audio and visual cues for AR, as audio can
provide strong complementary evidence for certain actions.
This strong correlation enables accurate semantic predic-
tions of one modality from the other. At the same time, their
intrinsic differences make cross-modal prediction a valuable
pretext task for self-supervised learning, offering advantages
over within-modality learning. Building on this idea, Cross-
Modal Deep Clustering (XDC) [4] uses both the semantic
correlation and distinct characteristics of visual and audio
modalities to enhance AR. Similarly, a fused multisensory
representation [108] has been introduced to jointly model
visual and audio components, leading to a richer and more
robust understanding of video content.

SoundNet [6] transfers discriminative knowledge from
visual recognition models to the sound modality. Us-
ing two million unlabeled videos, it bridges the gap be-
tween vision and audio, making it ideal for extracting au-
dio features as ground truth in our hallucination process.
More recently, OmniVec2 [135], a multimodal multitask

transformer-based model, has been introduced. It employs
modality-specialized tokenizers, a shared transformer archi-
tecture, and cross-attention mechanisms to project differ-
ent modalities, including audio, into a unified embedding
space. Additionally, InternVideo2 [170], a new family of
video foundation models, incorporates video-audio corre-
spondence in its second-stage training, encouraging deeper
semantic learning across modalities.

2.5 Uncertainty in Computer Vision

Uncertainty in computer vision is generally categorized
into aleatoric and epistemic uncertainty [105, 79, 69, 66,
75]. Aleatoric uncertainty is typically modeled by a Gaus-
sian distribution over the predictions, while epistemic un-
certainty is represented by a distribution over the model
weights, as seen in Bayesian Neural Networks. In simple
terms, aleatoric (or statistical) uncertainty refers to random-
ness or inherent variability in the data, whereas epistemic (or
systematic) uncertainty refers to uncertainty stemming from
a lack of knowledge (e.g., uncertainty about the best model,
essentially representing ignorance).

In this work, we primarily focus on heteroscedastic
aleatoric uncertainty, which has become popular in many
applications. Examples include uncertainty-weighted multi-
task loss in depth regression and segmentation [76], bound-
ing box regression with uncertainty in Faster R-CNN [61]
and YOLOv3 [25], deep learning-assisted methods for mea-
suring uncertainty in action recognition [3], uncertainty-
aware audio-visual action recognition [137], uncertainty
quantification for deep context-aware mobile AR [67], struc-
tured uncertainty prediction networks for face images [40],
and recent few-shot keypoint detection with uncertainty
learning [102]. However, many of these approaches treat
multiple variables independently, while we model uncer-
tainty with covariance to capture the underlying relation-
ships between variables. Specifically, we model the aleatoric
uncertainty of features during the hallucination step to fur-
ther enhance the performance of action recognition.

2.6 Power Normalization Family

BoW, FV and even CNN-based descriptors must address
the phenomenon of burstiness, which is defined as ‘the prop-
erty that a given visual element appears more times in an
image than a statistically independent model would predict’
[71]. This phenomenon is also present in video descriptors.
Power Normalization [87, 85] is known to mitigate bursti-
ness and has been extensively studied in the context of BoW
[87, 85, 86, 89]. Additionally, a connection to max-pooling
was identified in [87], which demonstrates that the so-called



6 Lei Wang, Piotr Koniusz

MaxExp pooling is, in fact, a detector of ‘at least one partic-
ular visual word being present in an image’. According to
the studies [87, 89], many Power Normalization functions
are closely related. The Power Normalizations used in our
work are outlined in Section 3.

3 Background

Below, we provide the necessary background informa-
tion for our framework, beginning with an introduction to
our notations.
Notations. We use boldface uppercase letters to represent
matrices, e.g., MMM,PPP; regular uppercase letters with a sub-
script to represent matrix elements, e.g., Pi j, which denotes
the (i, j)th element of PPP; boldface lowercase letters for vec-
tors, e.g., x,φφφ ,ψψψ; and regular lowercase letters for scalars.
Vectors may be numbered, e.g., xn, while regular lowercase
letters with a subscript represent an element of a vector, e.g.,
xi is the ith element of x. The operators ‘;’ and ‘,’ are used
to concatenate vectors along the first and second modes, re-
spectively. For example, ⊚i∈IK vi= [v1; ...;vK ] and ⊚2

i∈IK
vi=

[v1, ...,vK ] concatenate a group of vectors along the first and
second modes, respectively. ↑⊗r denotes the r-th Kronecker
power. The operator ⊕ denotes aggregation (sum), while Id
represents an index set of integers {1, ...,d}.

3.1 Descriptor Encoding Schemes

Bag-of-Words [134, 29] assigns each local descriptor xxx to
the closest visual word from MMM=[mmm1, ...,mmmK ], which is built
using k-means. To obtain the mid-level feature φφφ , we solve
the following optimization problem:

φφφ = argmin
φφφ
′′′

∥∥xxx−MMMφφφ
′′′∥∥2

2,

s. t. φφφ
′′′ ∈ {0,1},1T

φφφ
′′′=1.

(1)

Fisher Vector Encoding [112, 113] uses a mixture of K
Gaussians from a GMM as a dictionary. It encodes descrip-
tors with respect to the Gaussian components G(wk,mmmk,σσσ k),
which are parametrized by the mixing probability, mean, and
diagonal standard deviation. The first- and second-order fea-
tures φφφ k,φφφ

′
k ∈ RD are given by:

φφφ k = (xxx−mmmk)/σσσ k, φφφ
′
k = φφφ

2
k−1. (2)

The concatenation of per-cluster features φφφ
∗
k ∈ R2D forms

the mid-level feature φφφ ∈ R2KD:

φφφ = [φφφ ∗
1; ...;φφφ

∗
K ] , φφφ

∗
k =

p(mmmk|xxx,θ)√
wk

[
φφφ k;φφφ

′
k/
√

2
]
, (3)

where p and θ represent the component membership prob-
abilities and the parameters of the GMM, respectively. For

each descriptor xxx with dimensionality D (after PCA), its en-
coding φφφ has a dimensionality of 2KD, as it captures both
first- and second-order statistics.

3.2 Pooling a.k.a. Aggregation

Traditionally, pooling is performed by averaging mid-
level feature vectors φφφ(x) corresponding to local descrip-
tors x∈X from a video sequence X , expressed as ψψψ =

avgx∈X φφφ(x), with optional ℓ2-normalization. In this paper,
we apply this approach to both full sequences X and sub-
sequences.

Proposition 1 For subsequence pooling, let X s,t =X 0,t \
X 0,s−1, where X s,t denotes the set of descriptors in the
sequence X from frame s to frame t, with 0 ≤ s ≤ t ≤ τ ,
X 0,−1 ≡ /0, and τ is the length of X . Let us compute an
integral mid-level feature φφφ

′
t = φφφ

′
t−1+∑x∈X t,t φφφ(x), which

aggregates mid-level feature vectors from frame 0 to frame
t, with φφφ

′
−1 initialized as an all-zeros vector. The pooled sub-

sequence is then given by:

ψψψs,t =
φφφ
′
t−φφφ

′
s−1

∥φφφ
′
t−φφφ

′
s−1∥2 + ε

=
∑x∈X s,t φφφ(x)

∥∑x∈X s,t φφφ(x)∥2 + ε
, (4)

where 0≤s≤t≤ τ are the starting and ending frames of sub-
sequence X ′

s,t⊆X , and ε is a small constant. We normalize
the pooled sequences/subsequences as described next.

3.3 Power Normalization

As discussed in Section 2, we apply power normaliza-
tion functions to each stream, such as ODF and SDF. We
investigate three operators g(ψψψ, ·), detailed in Remarks 1–3.

Remark 1 The AsinhE function [89] is an extension of the
well-known power normalization (Gamma) [89], defined as
g(ψψψ,γ)=Sgn(ψψψ)|ψψψ|γ for 0<γ≤1, with a smooth derivative
and a parameter γ ′. The AsinhE function is defined as the
normalized Arcsin hyperbolic function:

g(ψψψ,γ ′)= arcsinh(γ ′ψψψ)/arcsinh(γ ′). (5)

Remark 2 Sigmoid (SigmE), a max-pooling approximation
[89], is an extension of the MaxExp operator defined as
g(ψψψ,η)=1−(1−ψψψ)η for η >1. This operator is extended
to have a smooth derivative and a response defined for real-
valued ψψψ (rather than ψψψ ≥ 0), with a parameter η ′ and a
small constant ε ′:

g(ψψψ,η ′)=
2

1+e−η ′ψψψ/(∥ψψψ∥2+ε ′)−1. (6)

Remark 3 AxMin, a piecewise linear form of SigmE [89],
is given as g(ψψψ,η ′′)=Sgn(ψψψ)min(η ′′ψψψ/(∥ψψψ∥2+ε ′),1) for
η ′′>1 and a small constant ε ′.
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Although these three pooling operators serve similar roles,
we investigate each one because their interplay with end-to-
end learning differs. Specifically, limψψψ→±∞ g(ψψψ, ·) for As-
inhE and SigmE are ±∞ and ±1, respectively, thus their
asymptotic behaviors differ. Moreover, AxMin is non-smooth
and relies on the same gradient re-projection properties as
ReLU.

3.4 Count Sketches

Sketching vectors via the count sketch [28, 171] is a
technique for dimensionality reduction, which we apply in
this paper.

Proposition 2 Let d and d′ denote the dimensionality of
the input and sketched output vectors, respectively. Let the
vector hhh ∈ I d

d′ contain d integers uniformly drawn from
{1, ...,d′}, and let the vector sss∈{−1,1}d contain d values
uniformly drawn from {−1,1}. The sketch projection matrix
PPP∈{−1,0,1}d′×d is given by:

Pi j =

{
si if hi= j,

0 otherwise,
(7)

where si is the corresponding value from sss. The sketch pro-
jection p : Rd→Rd′ is a linear operation, defined as p(ψψψ)=

PPPψψψ (or p(ψψψ;PPP)=PPPψψψ to explicitly highlight PPP).
Proof This follows directly from the definition of the count
sketch, as explained in Definition 1 of [171].

Remark 4 Count sketches are unbiased estimators:
Ehhh,sss(p(ψψψ,PPP(hhh,sss)), p(ψψψ ′,PPP(hhh,sss))) = ⟨ψψψ,ψψψ ′⟩.
The variance is given by: Vhhh,sss(p(ψψψ), p(ψψψ ′)) ≤
1
d′

(
⟨ψψψ,ψψψ ′⟩2 +∥ψψψ∥2

2∥ψψψ ′∥2
2

)
, so larger sketches reduce

noisy. Thus, for each modality, we use a separate sketch
matrix PPP.
Proof For the first and second properties, see Appendix A
of [171] and Lemma 3 of [114].

3.5 Sketching the Power Normalized Vectors

Proposition 3 Sketching PN vectors increases the sketching
variance (normalized by ℓ2 vector norms) by a factor of 1≤
κ ≤2.

Proof The variance V from Remark 4 is normalized by
the norms ∥ψψψ∥2

2∥ψψψ ′∥2
2. Let V(γ) denote the variance for

d-dimensional vectors {(ψψψγ ,ψψψ ′γ) : ψψψ ≥ 0,ψψψ ′ ≥ 0}, where
the vectors are power-normalized by Gamma as described
in Remark 1. This variance is similarly normalized by
∥ψψψγ∥2

2∥ψψψ ′γ∥2
2. For extreme PN (γ → 0), the variance sim-

plifies as follows:

lim
γ→0

V(γ)=
1
d′ lim

γ→0

(
⟨ψψψγ ,ψψψ ′γ⟩2

∥ψψψγ∥2
2∥ψψψ ′γ∥2

2
+1

)
=

2
d′ . (8)

Now, assume the d-dimensional vectors ψψψ and ψψψ ′ are ℓ2-
norm normalized. The ratio of variances can then be ex-
pressed as:

κ =V/V(γ) = 2/(
〈
ψψψ,ψψψ ′〉2

+1), (9)

The factor κ depends on the pair (ψψψ,ψψψ ′) and varies
smoothly within the range [1,2] as γ changes between 0 and
1. The Gamma is a monotonically increasing function, and
for typical values such as γ = 0.5, empirical data suggests
κ ≈1.3.

3.6 Positional Embedding

Let Gσ (x−x′) = exp(−∥x−x′∥2
2 /2σ2) denote the stan-

dard Gaussian RBF kernel centered at x′ with bandwidth
σ . Kernel linearization refers to rewriting Gσ as the inner-
product of two infinite-dimensional feature maps. To obtain
these maps, we use a fast approximation method based on
probability product kernels [70]. Specifically, we use the in-
ner product of d′′-dimensional isotropic Gaussians for x,x′∈
Rd′′. Thus, we have:

Gσ

(
x−x′

)
=

(
2

πσ2

)d′′
2 ∫
ζζζ∈Rd′′

G
σ/

√
2(x−ζζζ )G

σ/
√

2(x
′−ζζζ )dζζζ .

(10)

Eq. (10) is approximated by replacing the integral with a
sum over Z pivots ζζζ 1, ...,ζζζ Z , yielding the feature map φφφ as:

φφφ(x;{ζζζ i}i∈IZ ) =
[
G

σ/
√

2(x−ζζζ 1), ...,Gσ/
√

2(x−ζζζ Z)
]T
,

(11)

and Gσ (x−x′)≈
〈√

cφφφ(x),
√

cφφφ(x′)
〉
, (12)

where c is a constant. Eq. (12) is the linearization of the
RBF kernel, and Eq. (11) defines the feature map. The pivots
{ζζζ i}i∈IZ are evenly spaced in the interval [0;1], with Z total
pivots. For simplicity, we drop the explicit notation of the
pivots {ζζζ i}i∈IZ and write φφφ(x), etc..

3.7 Action Recognition Backbones

Below, we present six mainstream models used as back-
bones for feature hallucination.

I3D [15] (Inflated 3D ConvNet) is a two-stream archi-
tecture that extends 2D ConvNet (pre-trained on ImageNet-
1K [34]) by inflating their kernels to 3D, enabling spatiotem-
poral feature extraction. The model has become one of the
most widely adopted frameworks for video processing tasks.
Variants such as S3D [176] build on the I3D architecture
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by introducing modifications to its modules to enhance effi-
ciency and performance. In our work, we adapt I3D by re-
moving its final convolutional layer and classifier to con-
struct the backbone network. The pre-trained weights from
Kinetics-400 are used for feature hallucination, allowing us
to leverage its robust video representation capabilities.

AssembleNet [125] is a family of learnable models de-
signed to optimize the ‘connectivity’ among features across
input modalities, tailored for specific target tasks such as
AR. Its extension, AssembleNet++ [124], introduces peer-
attention mechanisms that enable the model to learn the in-
teractions and relative importance of features, particularly
between semantic object information and raw appearance
and motion features. By removing the classification layer,
we extract a 2048-dimensional output from the 3D average
pooling layer as the intermediate representation for feature
hallucination. For our backbone, we use AssembleNet++
pre-trained on Kinetics-400, using its robust capability to
capture spatiotemporal and multimodal information.

VTN [91] uses the latest advancements in Vision Trans-
former (ViT) for computer vision tasks, applying it to AR.
VTN consists of two main components: (i) an encoder that
processes each frame of the input sequence independently
using a 2D CNN to generate frame embeddings (pre-trained
models are used to maximize the benefits of transfer learn-
ing from image classification tasks), and (ii) a decoder
that integrates intra-frame temporal information in a fully-
attentional, feed-forward manner, ultimately producing clas-
sification scores for the video clip. For our backbone, we
remove the final classification layer of VTN. We adopt the
default model hyperparameters as specified in [91], such as
4 stacked decoder blocks, 8 attention heads, and frame em-
beddings of size 512. For the encoder, we use MobileNet
V2 [126] and ResNet-34 [60], forming two different back-
bones: VTN-MobileNet and VTN-ResNet.

FASTER [188] is a general framwork designed to ag-
gregate both expensive and lightweight representations from
different clips. It combines an expensive model, which cap-
tures detailed action information (e.g., subtle motion), and
a lightweight model, which tracks scene changes over time
to minimize redundant computation between neighboring
clips. This approach ensures global coverage of the entire
video at a low cost by using FAST-GRU to aggregrate rep-
resentations from different clip models. For the clip-level
backbone in FASTER, we follow the method outlined in
[188], selecting R(2+1)D-50 [145] as the expensive model
and R2D-26 [145] as the lightweight model. We form our
backbone by removing the final classification layer. In our
experiments, we choose a clip length of L=8 and use 8 clips.

VideoMAE [143] is a cutting-edge self-supervised
video pre-training framework that introduces video tube
masking with a high masking ratio. This design makes video
reconstruction a more challenging and meaningful self-

supervision task, encouraging the extraction of more effec-
tive video representations during pre-training. Its advanced
version, VideoMAE V2 [154], scales VideoMAE further
by introducing a dual masking strategy for improved effi-
ciency. This approach applies a masking map to both the en-
coder and decoder, significantly reducing the decoder’s in-
put length while maintaining effectiveness. For feature hal-
lucination, we use the VideoMAE V2 pre-trained encoder
on UnlabeledHybrid [154], with ViT-g as the backbone.

InternVideo2 [170] is a state-of-the-art video founda-
tion model excelling in video recognition, video-text tasks,
and video-centric dialogue. It employs a progressive train-
ing approach that integrates masked video modeling, cross-
modal contrastive learning, and next-token prediction, scal-
ing the video encoder to an impressive 6 billion parame-
ters. The training unfolds in three stages: first, video data
is fed into the model to reconstruct unmasked video to-
kens, maximizing the capture of spatiotemporal visual con-
cepts. Second, the model aligns video with audio, speech,
and text through cross-modal contrastive learning, enrich-
ing it with semantic information. Finally, the model predicts
the next token using video-centric inputs, embedding even
deeper semantics. For our feature hallucination backbone,
we use InternVideo2-1B, trained in the first stage, denoted
as InternVideo2s1.

4 Approach

Our pipeline, illustrated in Fig. 2, comprises the follow-
ing components: (i) BoW/FV/OFF streams (dashed black),
(ii) Object Detection Features (ODF) and Saliency Detec-
tion Features (SDF) streams, (iii) the GCN-encoded Skele-
ton Features (GSF) stream, (iv) the SoundNet-encoded Au-
dio Features (AF) stream, (v) the High Abstraction Fea-
tures (HAF) stream, (vi) the Prediction Network (abbrevi-
ated as PredNet), and (vii) the Covariance Estimation Net-
work (CENet), which facilitates uncertainty-aware feature
descriptor learning.

Each stream begins by processing the intermediate rep-
resentations generated by the backbone from the RGB
frames. These representations are refined through a halluci-
nation process to approximate features using Mean Squared
Error (MSE) loss between the ground-truth features and the
outputs of the hallucinated streams. The HAF stream en-
hances the backbone representations before integrating them
with the hallucinated streams. PredNet then combines the
outputs from all streams, BoW, FV, OFF, HAF, ODF, SDF,
GSF and AF, to learn action concepts for classification.

The following sections detail our method: we start by
describing the extraction of ODF and SDF descriptors.
Next, we explain the hallucination streams and the com-
putation of ground-truth features, followed by a discussion
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on uncertainty-aware learning and the design of CENet. Fi-
nally, we introduce the objective function used for feature
hallucination.

4.1 Statistical Motivation

Before introducing our ODF and SDF descriptors, we
highlight the importance of higher-order statistics in captur-
ing the nuanced characteristics of video data [82, 88, 17, 84].
Comparing videos requires more than simple feature match-
ing; it necessitates robust representations of the underly-
ing distribution of local features (e.g., detection scores) or
descriptors. The characteristic function, ϕϒ (ωωω), provides a
comprehensive description of this distribution by represent-
ing the probability density fϒ (υυυ) of the features υυυ ∼ϒ :
ϕϒ (ωωω)=Eυυυ∼ϒ

(
exp(iωωωTυυυ)

)
. Using a Taylor series expan-

sion, the characteristic function can be expressed as:

Eυυυ∼ϒ

(
∞

∑
r=0

i j

r!
⟨υυυ ,ωωω⟩r

)
≈ 1

N

N

∑
n=0

∞

∑
r=0

ir

r!
⟨↑⊗rυυυn,↑⊗rωωω⟩= (13)

∞

∑
r=0

ir

r!

〈
1
N

N

∑
n=0

↑⊗rυυυn,↑⊗rωωω

〉
=

∞

∑
r=0

〈
X (r),

ir

r!
↑⊗rωωω

〉
,

where i is the imaginary unit, ↑⊗r is the r-th Kronecker

power, and X (r), defined as X (r)= 1
N

N
∑

n=0
↑⊗rυυυn, is a tensor

capturing the r-th order moment of the feature distribution.
In principle, with infinite data and infinite moments, one

can fully capture fϒ (υυυ). In practice, first-, second- and third-
order moments are typically sufficient, however, second-
and third-order tensors grow quadratically and cubically
with respect to the size of υυυ . Thus, in what follows, we
represent second-order moments not by a covariance ma-
trix but by the subspace corresponding to the top n′ lead-
ing eigenvectors. We also make use of the corresponding
eigenvalues of the signal. Finally, it suffices to notice that
κκκ(r)=diag

(
X (r)

)
corresponds to the notion of order r cu-

mulants used in calculations of skewness (r=3) and kurto-
sis (r = 4) but it grows linearly with respect to the size of
υυυ . Thus, in what follows, we use the ℓ2 norm normalized
mean, leading eigenvectors (and trace-normalized eigenval-
ues), skewness and kurtosis (rather than coskewness and
cokurtosis) to obtain compact representation of ODF and
SDF.

4.2 Object Detection Features

Each object bounding box is described by the feature
vector:

υυυ =
[
δδδ (y(det));y(inet);φφφ(ς);⊚i∈I4φφφ(vi);φφφ

( t−1

τ−1

)]
∈Rd, (14)

where δδδ = [0, ...,1, ...,0]T is a vector with all zeros except
for a single 1 at the location y. Since there are 91 object
classes for detectors trained on the COCO dataset and 80
classes for those trained on the AVA v2.1 dataset, we as-
sume y(det) ∈I91+80, where the labels 0, ...,90 correspond
to COCO classes, and classes 91, ...,79+91 correspond to
AVA v2.1 classes. Additionally, y(inet)∈R1001 represents an
ℓ1-norm normalized ImageNet-1K classification score, 0≤
ς ≤1 is the detector confidence score, v0, ...,v4 are the nor-
malized Cartesian coordinates (top-left and bottom-right) of
a bounding box in the range [0;1], and (t−1)/(τ−1) is the
normalized frame index with respect to the total sequence
length τ . For feature maps φφφ(·) defined in Eq. (11), we use
Z=7 pivots and set the RBF σ to 0.5.

For all detections per video from a given detector, we
first compute the mean µµµ([υυυ1, ...,υυυN ])∈Rd (denoted as µµµ),
where N is the total number of detections. We then form a
matrix ϒϒϒ ∈ Rd×N :

ϒϒϒ =
1

J

[
1

K1

[
⊚2

i∈IK1
(υυυ i1−µµµ)

]
, ...,

1

KJ

[
⊚2

i∈IKJ
(υυυ iJ−µµµ)

]]
,

(15)

where K j denotes the number of detections per frame j∈IJ .
From this, we extract higher-order statistical moments as de-
scribed below. Since N is large and its size varies across
videos, hallucinating ϒϒϒ directly is infeasible (and lacks in-
variance properties).

First, we compute UUUλλλVVV = svd(ϒϒϒ ), rather than
UUUλλλ

2UUUT = eig
(

ϒϒϒϒϒϒ
T
)

since N ≪ d, where UUU = [u1,u2, ...].

We take X (r)({v−µµµ}N
n=0

)
(abbreviated as X (r)) and de-

fine κκκ(r)=diag
(
X (r)

)
as described in Section 4.1. We then

form our multi-moment descriptor ψψψ(det)∈Rd(4+n′), n′≥1:

ψψψ(det)=

[
µµµ

||µµµ||2
;⊚2

i∈In′
ui

(
X (2)

)
;

κκκ(3)(
κκκ(2)

)3/2 ;
κκκ(4)(
κκκ(2)

)2 ;
diag(λλλ 2)

∑iλ
2
ii

]
.

(16)

The composition of Eq. (16) is explained in Section 4.1. It
is easy to verify that κκκ(3)

(κκκ(2))
3/2 and κκκ(4)

(κκκ(2))
2 are the empirical

versions of skewness and kurtosis, given by
Eυυυ∼ϒ((υυυ−µµµ)3)
E3/2

υυυ∼ϒ((υυυ−µµµ)2)

and
Eυυυ∼ϒ((υυυ−µµµ)4)
E2

υυυ∼ϒ((υυυ−µµµ)2)
, respectively.

4.3 Saliency Detection Features

We extract directional gradients from saliency
frames using discretized gradient operators [−1,0,1]
and [−1,0,1]T , obtaining gradient amplitude and ori-
entation maps, ΛΛΛ and θθθ , for each frame, encoded as
follows:

υυυ
′
(sal) = ∑

i∈IW , j∈IH

Λi jφφφ(θi j/(2π))⊗φφφ

( i−1

W−1

)
⊗φφφ

( j−1

H−1

)
, (17)
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dddd dd
dd d(FASTER)2048x7x7 7x7 dd d(Video Transformer Network)512 512

(a)

(b)

Fig. 3: Stream details. Figure 3a shows the architecture we use for the
BoW, FV, OFF, HAF, ODF, SDF, GSF, and AF streams for four differ-
ent backbones. Figure 3b shows the architecture of our PredNet. The
operations and their parameters are specified within each block (e.g.,
conv2d with its filter count/size, and Power Normalization (PN)). The
input and output sizes are indicated under the corresponding arrows.
For our experiments, we select d=128, 256 or 512, depending on the
dataset.

where ⊗ represents the Kronecker product, and φφφ(θ) fol-
lows Eq. (11), except that the assignment to Gaussians is
performed in the modulo ring to respect the periodic nature
of θ . We encode φφφ(θ) with 12 pivots to capture the orien-
tation of gradients. The remaining maps φφφ(·) are encoded
with 5 pivots each, corresponding to spatial binning. Note
that υυυ ′

(sal) (denoted as υυυ ′) is conceptually similar to a sin-
gle CKN layer [104], but simpler: for one-dimensional vari-
ables, we sample pivots (similar to learning) for the maps
φφφ(·). Each saliency frame is represented as a feature vector:
υυυ† = [υυυ ′/||υυυ ′||2; I:/||I:||1]∈Rd†

, where I: is a vectorized low-
resolution saliency map. Thus, υυυ† captures both the direc-
tional gradient statistics and the intensity-based gist of the
saliency maps.

Next, we compute the mean µµµ([υυυ†
1, ...,υυυ

†
J ])∈Rd†

(de-
noted as µµµ), where J is the total number of frames per
video. We then obtain ϒϒϒ

† =
[
υυυ

†
1, ...,υυυ

†
J

]
/J ∈Rd†×J, which

is compactly described by the multi-moment expression in
Eq. (16), resulting in the multi-moment descriptor ψψψ(sal)∈
Rd(4+n†).

4.4 Hallucinating Streams

Each stream processes the intermediate representation,
X(rgb), which is obtained either by removing the classifier
and/or the final 1D convolutional layer of the backbone net-
work, as detailed in Section 3.7, or by pooling spatiotem-
poral token embeddings, as used in VideoMAE V2 and In-
ternVideo2. To implement the pipeline for each stream, we
follow the approach in [162], using a Fully Connected (FC)
unit. Furthermore, each stream is equipped with a PN mod-
ule. For the PN implementation, we explore three variants:

AsinhE, SigmE, and AxMin, described in Remarks 1, 2 and
3, respectively. Below, we provide a detailed explanation of
each stream and its corresponding ground truth. It is impor-
tant to note that ground-truth features are used exclusively
during the training phase to train the hallucination streams.
BoW/FV. As FV captures both first- and second-order statis-
tics, we use a separate stream for each type of statistic. For
BoW, we follow the process outlined in Section 3.1. Specifi-
cally, we apply k-means to build a 1000-dimensional dictio-
nary using the same descriptors employed for precomputing
FV. The descriptors are then encoded according to Eq. (1),
aggregated using the steps described in Section 3.2, and nor-
malized with PN as discussed in Section 3.3. Where applica-
ble, we use 4000-dimensional dictionary for BoW and apply
sketching to reduce the vector size to d dimensions. To train
Fisher Vectors, we compute 256-dimensional GMM-based
dictionaries on descriptors derived from IDT [150], follow-
ing the steps detailed in Sections 2 and 3.1. PCA is applied to
the trajectory (30 dimensions), HOG (96 dimensions), HOF
(108 dimensions), MBHx (96 dimensions) and MBHy (96
dimensions) features, yielding a final 213-dimensional local
descriptor. The encoded first- and second-order FV repre-
sentations, each of size 256×213=54528, are sketched to
d dimensions as described in Section 3.4. For this purpose,
we prepare matrices PPP( f v1) and PPP( f v2) as defined in Proposi-
tion 2. The sketched first- and second-order representations,
ψψψ ′

( f v1)=PPP( f v1)ψψψ( f v1) and ψψψ ′
( f v2)=PPP( f v2)ψψψ( f v2), can then be

seamlessly integrated with the loss functions detailed in Sec-
tion 4.7.
I3D OFF. We use the I3D optical flow pre-trained on
Kinetics-400 as the feature extractor to obtain the OFF (Fig.
2), denoted as ψψψ(o f f ). These features have a dimensional-
ity of 1024, which we sketch to d dimensions before using
them as training ground truth for the OFF layer. LDOF [10]
is used as it effectively handles large displacements.
ODF and SDF. The ODF ground-truth training represen-
tations are of size 1214×N, where N is the total number
of bounding boxes per video (ranging from 50 to 10,000).
The 1214-dimensional features consist of: 80+91 one-hot
encoding for detection classes, 6×7 values representing
φφφ(·)-embedded confidence scores, bounding box coordi-
nates, and frame numbers, and 1001-dimensional ImageNet
scores. An alternative representation without the RBF em-
bedding, φφφ(x) = x, results in features of size 1178 × N.
The SDF ground-truth training representations have a size
of 556×J, where J is the number of frames per video.
These features include: 300 dimensions (12×5×5) captur-
ing spatio-angular gradient distributions, and 256 dimen-
sions (16×16) capturing the luminance of saliency maps.
Both ODF and SDF are encoded per video using the multi-
moment descriptor in Eq. (16), producing compact repre-
sentations of size 1178×(4 + n′) and 556×(4 + n†), re-
spectively, where n′ and n† are varied between 1 and 5.
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These representations are Power Normalized with SigmE
and sketched to d dimensions via ψψψ ′

(·) =PPP(·)ψψψ(·). The re-
sulting features are fed into loss functions such as MSE.
Ground-truth representations are used only during training.
Skeleton features. We extract skeleton features (GSF) us-
ing ST-GCN pre-trained on large-scale Kinetics-skeletons.
These 400-dimensional features are sketched to d dimen-
sions as ψψψ ′

(gs f ) = PPP(gs f )ψψψ(gs f ) and used as ground truth
for training. For datasets lacking skeleton data (e.g., MPII
Cooking Activities, Charades, and EPIC-Kitchens), GSF
training is disabled. However, during testing, this stream can
leverage pre-trained models (e.g., from Toyota Smarthome)
to generate hallucinated features.
Audio features. Audio features (AF) are extracted using the
8-layer SoundNet model pre-trained on two-million unla-
beled videos [6]. For datasets with audio, the audio is ex-
tracted from video using FFmpeg [142] with a bit rate of
160 kbps, two audio channels, and a sample rate of 44100
Hz. If a video contains sound, a corresponding .wav file is
generated. Follow [6], the audio is downsampled to 22 kHZ
and converted to a single channel for efficiency, with a mi-
nor trade-off in sound quality. The waveform is scaled to
the range [-256, 256] for feature extraction from the pool5
layer. These features are sketched to d dimensions as ground
truth. The AF stream is trained only if the dataset contains
audio.
HAF. Each stream applies PN to hallucinated features,
aligning the hallucinated output ψ̃ψψ(·) (of d dimensions) with
the ground-truth features ψψψ ′

(·) described earlier. High Ab-
straction Features (HAF) follow the same steps, combin-
ing with other streams and passing the backbone features
into PredNet (see Fig. 2). While hallucinated streams co-
supervise the backbone through external ground-truth tasks,
HAF directly processes backbone features for PredNet.
PredNet. The final component of the pipeline, PredNet, is
illustrated in Figure 3b. Its input is ψψψ(tot) (unsketching) or
ψψψ ′

(tot) (sketched). This input is passed through batch nor-
malization, followed by a fully connected (FC) layer that
produces a C-dimensional representation. This output is op-
timized using cross-entropy loss.

4.5 Uncertainty Learning

We concatenate the ground truth features
of BoW, FV, I3D OFF, ODF, SDF, GSF,
and AF into a column feature vector: ψψψ ′ =

[ψψψ ′
bow,ψψψ

′
f v1,ψψψ

′
f v2,ψψψ

′
o f f ,ψψψ

′
od f ,ψψψ

′
sd f ,ψψψ

′
gs f ,ψψψ

′
a f ]

T ∈
Rd′ . Similarly, the hallucinated features are
concatenated into a column vector: ψ̃ψψ =

[ψ̃ψψbow, ψ̃ψψ f v1, ψ̃ψψ f v2, ψ̃ψψo f f , ψ̃ψψod f , ψ̃ψψsd f , ψ̃ψψgs f , ψ̃ψψa f ]
T ∈Rd′ .

Mean Squared Error (MSE) assumes the errors across all
features are independent and identically distributed (i.i.d.)

or, equivalently, that the covariance matrix is diagonal [12,
77]. While this approach enables local noise level estima-
tion, it makes a limiting and often flawed assumption that
residuals (errors) across features are uncorrelated. To ad-
dress this, we extend the noise model to use a multivari-
ate Gaussian likelihood with a full covariance matrix. This
matrix captures feature correlations, allowing for structured
residual sampling. A maximum likelihood approach is used
to train the covariance prediction. Given the hallucinated
features ψ̃ψψ ′ and the ground truth features ψψψ ′, we replace the
MSE loss with the following uncertainty learning objective:

argmaxlogN (ψ̃ψψ;ψψψ
′,ΣΣΣ)

= argmaxlog
1

(2π)
d′
2 |ΣΣΣ | 1

2

e−
1
2 (ψ̃ψψ−ψψψ ′)TΣΣΣ

−1(ψ̃ψψ−ψψψ ′)

= argmin
d′

2
log(2π)+

1
2

log(|ΣΣΣ |)+1
2
(ψ̃ψψ−ψψψ

′)T
ΣΣΣ

−1(ψ̃ψψ−ψψψ
′)

≈ argminlog(|ΣΣΣ |)+(ψ̃ψψ−ψψψ
′)T

ΣΣΣ
−1(ψ̃ψψ−ψψψ

′), (18)

where ΣΣΣ is the covariance matrix, and d′ is the feature
dimension. Note that the constant term is removed, as it
does not influence the optimisation. To estimate the covari-
ance matrix ΣΣΣ , we use a Covariance Estimation Network
(CENet), discribed in the following section.

4.6 Covariance Estimation Network

A deep neural network is used to estimate the covari-
ance matrix ΣΣΣ , using the latent representation X(rgb) as in-
put. By definition, ΣΣΣ is symmetric and positive definite. For
a feature vector ψψψ ′ of dimensionality d′, the covariance ma-
trix contains (d′2−d′)/2+d′ unique parameters. This matrix
captures structured information about reconstruction uncer-
tainty, allowing the hallucinated output to more closely ap-
proximate the ground truth features.

Since ΣΣΣ appears in its inverted form (ΩΩΩ = ΣΣΣ
−1) in

the negative log-likelihood calculation (Eq. (18)), it is
more practical to estimate the precision matrix ΩΩΩ directly.
This also simplifies the log determinant computation, as
log(|ΣΣΣ |) = − log(|ΩΩΩ |). Rewriting Eq. (18), the objective
function for feature hallucination becomes:

argmin(ψ̃ψψ−ψψψ
′)T

ΩΩΩ(ψ̃ψψ−ψψψ
′)−κ log(|ΩΩΩ |), (19)

where κ ≥0 (typically κ ̸=d′) adjusts the penalty for large
uncertainty.

Using Cholesky decomposition, the precision matrix can
be represented as ΩΩΩ = ωωωωωωT, where ωωω is a lower trian-
gular matrix. The covariance network estimates ωωω explic-
itly. With this decomposition, it is trivial to evaluate two
terms in Eq. (18): (i) the reconstruction error: yTy, where
y = ωωωT(ψ̃ψψ−ψψψ ′), and (ii) the log determinant: log(|ΣΣΣ |) =
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−2∑
d′
i logωi,i, where ωi,i represents the i-th diagonal ele-

ment of ωωω . To ensure ΩΩΩ is positive-definite, the diagonal
elements are constrained to be strictly positive, for instance,
by estimating logωi,i using a network.

Computational complexity. Sampling from ΣΣΣ involves
solving a triangular system of equations via backward sub-
stitution, which requires O(d′2) operations. The number of
parameters to estimate grows quadratically with d′, making
direct estimation feasible only for features with small di-
mensionality.

Sparse Cholesky decomposition. To scale to higher-
dimensional feature vectors, we impose a fixed sparsity pat-
tern on ωωω , estimating only the non-zero values. Specifically,
ωi, j is non-zero only if i and j are within the same batch of
sampled feature indices. This reduces the maximum num-
ber of non-zero elements in ωωω to (d∗2−d∗)/2+d′, where
d∗ ≪ d′ represnts the batch size. We set d∗ to be the number
of feature types, ensuring each sampled index corresponds
to a feature within a specific type. With the sparsity, the un-
certainty model for each feature representation resembles a
Gaussian Random Field for residuals. A zero value in the
precision matrix ΩΩΩ at position (i, j) indicates conditional
independence between feature i and j.

Parallel computing. This sparse representation allows effi-
cient evaluation of the uncertainty model without construct-
ing a full dense matrix. Similarly, sampling can be per-
formed by solving a sparse system of equations. The method
is GPU-parallelizable, as each batch can be evaluated inde-
pendently.

CENet architecture. The Covariance Estimation Network
(CENet) is composed of several key components designed
to estimate the precision matrix ΩΩΩ efficiently and ensure it
is symmetric and positive-definite. First, the network begins
with a simple Multi-Layer Perceptron (MLP) that includes
two fully connected (FC) layers, a batch normalization layer,
and a ReLU activation function applied between them. This
MLP processes the input feature vector to generate a refined
representation.

Next, a zero padding layer expands the output dimen-
sions from (d∗2−d∗)/2+d′ to d′ ·d′, aligning it with the
dimensionality required for the precision matrix. The ex-
panded vector is then reshaped into a square matrix of size
d′×d′. To enforce the positive-definiteness of the precision
matrix, an exponential block is applied to the diagonal ele-
ments of the reshaped matrix. This ensures that the diagonal
entries are strictly positive by transforming them to remove
the logarithmic scale introduced during estimation.

Finally, the precision matrix ΩΩΩ is derived using the
Cholesky decomposition, ΩΩΩ = ωωωωωωT, where ωωω is a lower
triangular matrix estimated by the network. This decompo-
sition guarantees the symmetry and positive-definiteness of
ΩΩΩ .

The input to the CENet can be either (i) the intermediate
representation X(rgb), or (ii) the concatenated hallucinated
feature ψ̃ψψ , as described earlier. Both variants are evaluated
to determine the optimal input data for CENet’s operation.

4.7 Objective and its Optimization

Objective function. During training, we optimize a com-
bined loss function that incorporates an uncertainty learning
term for training hallucination streams and a classification
loss:

ℓ∗(X ,y;Θ̄ΘΘ)= α
(
(ψ̃ψψ−ψψψ

′)T
ΩΩΩ(ψ̃ψψ−ψψψ

′)−κ log(|ΩΩΩ |)
)

+ℓ
(

f(ψψψ ′
(tot);ΘΘΘ (pr)),y;ΘΘΘ (ℓ)

)
,

where: ∀i∈H , ψ̃ψψ i=g(ℏ(X ,ΘΘΘ i),η) ,ψψψ ′
i=PPPiψψψ i,

ψ̃ψψ =⊕i∈H ψ̃ψψ i,ψψψ
′=⊕i∈H ψψψ

′
i,

ψψψ(ha f )=g
(
ℏ(X ,ΘΘΘ (ha f )),η

)
,

ψψψ
′
(tot)=PPP(tot)

[
ψ̃ψψ;ψψψ(ha f )

]
,

ΩΩΩ =ωωωωωω
T,ωωω =c(X ,ΘΘΘ (cov))

or ωωω =c(ψ̃ψψ,ΘΘΘ (cov)). (20)

The equation above represents a trade-off between the un-
certainty learning term, (ψ̃ψψ−ψψψ ′)TΩΩΩ(ψ̃ψψ−ψψψ ′)−κ log(|ΩΩΩ |),
and the classification loss, ℓ(·,y;ΘΘΘ (ℓ)), with labels
y ∈ Y and parameters ΘΘΘ (ℓ) ≡ {WWW ,b}. The trade-off is
controlled by the constant α ≥ 0. Uncertainty is com-
puted over hallucination streams i ∈ H , where H ≡
{(bow),( f v1),( f v2),(o f f ),(od f ),(sd f ),(gs f ),(a f )}, a
set of hallucination streams that can be adjusted based on
the task at hand. Additionally, g(·,η) is the Power Normal-
ization function described in Section 3.3, and c(·,ΘΘΘ (cov))

is the CENet module with parameters ΘΘΘ (cov). The PredNet
module, f (·;ΘΘΘ (pr)), has learnable parameters ΘΘΘ (pr). The
hallucination streams {ℏ(·,ΘΘΘ i), i∈H } produce the corre-
sponding hallucinated BoW/FV/OFF/ODF/SDF/GSF/AF
representations {ψ̃ψψ i, i∈H }. The HAF stream is denoted by
ψψψ(ha f ), which is generated by ℏ(·,ΘΘΘ (ha f )).

The parameters {ΘΘΘ i, i ∈ H } are learned for the hal-
lucination streams, while ΘΘΘ (ha f ) is learned for the HAF
stream. The complete set of parameters is denoted as Θ̄ΘΘ ≡
({ΘΘΘ i, i∈H },ΘΘΘ (ha f ),ΘΘΘ (pr),ΘΘΘ (cov),ΘΘΘ (ℓ)). Furthermore, the
projection matrices {PPPi, i∈H } are used for count sketch-
ing of the ground-truth BoW/FV/OFF/ODF/SDF/GSF/AF
feature vectors {ψψψ i, i ∈ H }, and the corresponding
sketched/compressed representations are {ψψψ ′

i, i∈H }. The
projection matrix PPP(tot) handles the concatenation of the
hallucinated BoW/FV/OFF/ODF/SDF/GSF/AF representa-
tions with HAF. This results in ψψψ(tot)=

[
ψ̃ψψ;ψψψ(ha f )

]
, and its

sketched counterpart ψψψ ′
(tot) is fed into the PredNet module f .
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Section 3.4 explains how to select the matrices PPP. If sketch-
ing is not needed, we simply set PPP to be the identity matrix,
PPP=I. In our experiments, we set α =1.

We also explore a variant in which we use a weighted
average of several streams fed into the PredNet module f :

ψψψ
′
(tot)=

1
|H ∗|+1

(
w(ha f )ψψψ(ha f )+ ∑

i∈H ∗
wiψ̃ψψ i

)
,

ψ̃ψψ(det)=
1
|D | ∑i∈D

wiψ̃ψψ i, and ψ̃ψψ(sal)=
1

|S | ∑
i∈S

wiψ̃ψψ i,

(21)

where H ∗ ≡ {( f v1),( f v2),(bow),(o f f ),(od f ),(sd f )},
D ≡{(det1), ...,(det4)}, and S ≡{(sal1),(sal2)}. Let T
be set to H ∗, D or S , and the weights are defined as:

wi=
1

|T |
max(w′β

i ,ρ)

∑ j∈T max(w′β
j ,ρ)

. (22)

Optimization. Before training the CNN, we first train an
SVM for each ground-truth stream separately (using a man-
ageable subset of the data). The weights w′ are set propor-
tionally to the accuracies obtained on the validation set. For
the HAF stream, we set w′

(ha f )=
1

|H ∗|+1 and ρ =0.1. In the
first few epochs (i.e., 10), we set β = 0, ensuring that all
streams receive equal weights. Subsequently, we perform
a Golden-section search to determine the optimal β ≥ 0 in
each epoch. We start with boundary values β ∈{0,50}, train
an SVM on a manageable subset of training data, evaluate β

on the validation set, and update the boundary values for the
next epoch.

Eq. (22) has an interesting property: for β = 0, all
weights are equal, wi = 1/|T |. As β →∞, the weights be-
come binary: wi =1 if wi =max({wi}i∈T ), and wi =0 oth-
erwise. Thus, β interpolates between equal weighting and a
winner-takes-all approach.

We minimize ℓ∗(X ,y;Θ̄ΘΘ) with respect to the parame-
ters of each stream: {ΘΘΘ i, i∈H } for hallucination streams,
ΘΘΘ (ha f ) for the HAF stream, ΘΘΘ (cov) for CENet, ΘΘΘ (pr) for
PredNet, and ΘΘΘ (ℓ) for the classification loss. In practice, we
alternate between two minimization steps: one forward and
backward pass to update the parameters {ΘΘΘ i, i ∈H } and
ΘΘΘ (cov) for uncertainty learning, followed by another forward
and backward pass for the classification loss ℓ. This can be
viewed as a multi-task learning process, where we simulta-
neously learn BoW/FV/OFF/ODF/SDF/GSF/AF and label
tasks. We use the Adam minimizer with an initial learning
rate of 10−4, halved every 10 epochs, and train for 50–100
epochs, depending on the dataset.

5 Experiment

Below, we demonstrate the effectiveness of our method.
For smaller datasets, such as HMDB-51 and YUP++, we

use the I3D, VTN, and FASTER backbones. For Charades,
EPIC-KITCHENS-55, and Toyota Smarthome, we also in-
vestigate the AssembleNet++ backbones. For large-scale
Kinetics-400, Kinetics-600, and Something-Something V2,
we use the recent, popular VideoMAE V2 and InternVideo2.

5.1 Datasets and Evaluation Protocols

HMDB-51 [92] consists of 6766 internet videos across 51
classes, with each video containing approximately 20 to
1000 frames. We report the mean accuracy across three
splits.
YUP++ [45] contains 20 scene classes of video textures,
with 60 videos per class. The splits include scenes captured
by either static or moving cameras. We use the standard
splits (1/9 of the dataset for training) for evaluation.
MPII Cooking Activities [122] includes high-resolution
videos of people cooking various dishes. The 64 activities
span 3748 clips, including coarse actions such as opening
refrigerator, and fine-grained actions like peel, slice, and
cut apart. We report the mean Average Precision (mAP)
over 7-fold cross validation. For the human-centric proto-
col [22, 24], we use Faster R-CNN [120] to crop the video
around human subjects.
Charades [132] consists of of 9848 videos of daily indoor
activities, 66,500 clip annotations, and 157 classes.
EPIC-KITCHENS-55 [31] is a multi-class, egocentric
dataset with approximately 28K training videos associated
with 331 noun and 125 verb classes. The dataset contains of
39,594 segments across 432 videos. We follow the protocol
in [7] and evaluate our model on the validation set, as well as
the standard seen (S1: 8,047 videos), and unseen (S2: 2,929
videos) test sets.
Toyota Smarthome [32] consists of 16,115 RGB+D video
clips spanning 31 activity classes. This dataset poses several
challenges, such as high intra-class variation, high class im-
balance, simple and composite activities, and activities with
similar motion and variable duration. Activities are anno-
tated with both coarse and fine-grained labels. There are two
evaluation protocols for activity classification: cross-subject
and cross-view. Follow [32], we report the mean per-class
accuracy.
Kinetics-400 [74] contains 400 human action classes with
over 300K video clips, each containing 180 frames. The
dataset covers a wide range of actions, including sports, ev-
eryday tasks, and human-object interactions, and is split into
training, validation, and test sets.
Kinetics-600 [14] extends the Kinetics-400 dataset, with
over 500K video clips. It includes a more diverse set of ac-
tions compared to Kinetics-400, covering a broad spectrum
of human activities from both indoor and outdoor environ-
ments.
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Fig. 4: Evaluations of (fig. 4a) Power Normalization and (fig. 4b)
sketching on the HMDB-51 dataset (split 1 only).

Something-Something V2 [55] is a large-scale action
recognition dataset consisting of 220K videos across 174
action classes. The dataset focuses on human-object interac-
tions, where actions are typically described by phrases like
putting something in something or picking something up.

5.2 Evaluations of Various Design Components

Sketching and Power Normalization. Since PredNet uses
a fully connected (FC) layer (see Figure 3b), we expect that
limiting the input size to this layer through count sketch-
ing, as described in Section 3.4, should improve perfor-
mance. Additionally, given that visual and video represen-
tations often suffer from burstiness, we investigate the As-
inhE, SigmE, and AxMin methods, as outlined in Remarks
1, 2 and 3.

Figure 4a investigates the classification accuracy on the
HMDB-51 dataset (split 1) when our HAF and BoW/FV fea-
ture vectors {ψ̃ψψ i, i∈H } and ψψψ(ha f ) (described in Sections
4.4 and 4.7) are processed through Power Normalizing func-
tions: AsinhE, SigmE and AxMin, prior to concatenation
(see Figure 2). Our experiments show that all PN functions
perform similarly, improving results from a baseline 82.29%
to approximately 83.20% accuracy. A similar improvement
is observed on YUP++ (static), with accuracy rising from
93.15% to 94.44%. For simplicity, we use AsinhE for PN in
the following experiments.

Figure 4b illustrates the effect of applying count sketch-
ing to the concatenated HAF and BoW/FV feature vec-
tors ψψψ(tot), resulting in ψψψ ′

(tot) (see Section 4.7 for refer-
ence to symbols), on the HMDB-51 dataset (split 1). This
approach improves the accuracy from 82.88% to 83.92%
for d′ = 2000. This improvement is expected, as reduced
size of ψψψ ′

(tot) results in fewer parameters for the FC layer
in PredNet, reducing overfitting. Similarly, on the YUP++
dataset (split static), the accuracy increases from 93.15% to
94.81%.
ODF+SVM. Firstly, we evaluate our ODF on SVM us-
ing the HMDB-51 dataset. We set n′= 3 for Eq. (16) and
compare various detector backbones and pooling strategies.
Table 1 shows that all detectors perform similarly, with

sp1 sp2 sp3 mean acc.
det1 42.00 39.74 40.39 40.72
det1 40.49 40.13 39.67 40.09
det3 43.78 44.05 41.97 43.26
det4 41.08 39.22 40.39 40.23
all+avg 42.50 41.05 41.01 41.52
all+max 43.25 42.32 42.09 42.55
all+wei 45.80 44.52 44.09 44.80
DEEP-HAL+all+avg 83.25 82.24 82.84 82.77
DEEP-HAL+all+max 83.18 81.86 82.84 82.62
DEEP-HAL+all+wei 84.01 83.25 83.10 83.45

Table 1: Evaluations of ODF on HMDB-51. (Top) Performance is
evaluated using backbones: (det1) Inception V2, (det2) Inception
ResNet V2, (det3) ResNet101, and (det4) NASNet. (Middle) Re-
sults for average pooling, max pooling, and weighted mean com-
binations of all detectors are reported as (all+avg), (all+max), and
(all+wei), respectively. (Bottom) Pre-trained DEEP-HAL combined
with all four detectors is evaluated using average pooling, max pool-
ing, and weighted mean.

avg max wei
all 55.12 42.34 60.52
DEEP-HAL+all 74.22 71.85 75.74

Table 2: Pooling on YUP++. Results are shown for average pooling
(avg), max pooling (max), and weighted mean (wei) of all detectors
(all) compared to pre-trained DEEP-HAL combined with all detectors
using average pooling, max pooling, and weighted mean.
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Fig. 5: Impact of β in the weighted mean on classification perfor-
mance. Figure 5a presents results for HMDB-51 with (top) four com-
bined detectors + SVM and (bottom) DEEP-HAL with four combined
detectors + SVM. Figure 5b shows results for YUP++.

(det3) slightly outperforming the others. Additionally, max-
pooling on ODFs from all four detectors marginally outper-
forms average-pooling. However, only the weighted mean
(all+wei), as defined in Eq. (22), outperforms (det3), high-
lighting the importance of robust aggregation of ODFs. Sim-
ilarly, when combining pre-trained DEEP-HAL with all de-
tectors, the weighted mean (DEEP-HAL+all+wei) achieves
the best performance. Table 2 shows a similar trend on
YUP++.

We train SVM only on videos where at least one detec-
tion occurred, so the resulting accuracy of 75.74% is lower
than the main results reported on the full pipeline. Finally,
Figure 5 demonstrates that β ̸= 1 has a positive impact on
reweighting.

SDF. The SDF achieves accuracies of 24.35% on HMDB-51
and 32.68% on YUP++. This is expected, as SDF does not
capture discriminative information directly, but instead iden-
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Fig. 6: Evaluation of ODF with SVM using the weighted mean across
four detectors. Figure 6a and Figure 6b show results on HMDB-51
and YUP++, respectively. The parameters µµµ , u1, . . . ,ui, ςςς , ϕϕϕ , and λλλ

2

correspond to the entries in Eq. (16).

tify salient spatial and temporal regions to focus the main
network’s attention on.
Multi-moment descriptor. Figure 6 shows that concate-
nating the mean and three eigenvectors, as defined in Eq.
(16), yields good results. However, adding additional vec-
tors leads to a deterioration in performance. Adding skew-
ness and kurtosis (ςςς and ϕϕϕ) further improves the results,
while the inclusion of eigenvalues has a limited impact.
ImageNet (global score) vs.object detectors. Various
scores from the object and saliency detectors we use cannot
be directly integrated into DEEP-HAL due to the varying
number of detected objects and frames. Therefore, we pro-
pose and use ODF and SDF descriptors. Additionally, We
note that using a simplified version of ODF, which stacks
ImageNet-1K scores per frame into a matrix (without de-
tectors) and applies our multi-moment descriptor, yields ap-
proximately 4% worse results on Charades compared to
our DEEP-HAL+ODF (detectors-based approach), which
achieves 48.0% mAP. This is expected, as ImageNet-1K is
trained in a multi-class setting (one object per image), while
detectors allow us to robustly model the distribution of ob-
ject classes and locations per frame.
Reweighting mechanism. In this experiment, we em-
ploy the DEEP-HAL pipeline and hallucinate ODF and
SDF (d = 512). Typically, we use three levels of weight-
ing mean pooling, applied to: (i) four object detectors
constituting the ODF, (ii) two saliency detectors con-
stituting the SDF, and (iii) the final combination of
HAF/BoW/FV/OFF/ODF/SDF. Below, we investigate the
performance of a single weighted mean pooling step, ap-
plied simultaneously to four object detectors, two saliency
detectors, and the remaining streams.

Table 3 shows that using a flat, single-level weighted
mean pooling yields 86.1% accuracy on the HMDB-51,
which is approximately 1.4% lower than using three lev-
els of weighted mean pooling. We also observe that the im-
provement from using wei+3 levels is very minimal (around
0.2%). We expect that applying a single weighted mean
pooling per modality is a reasonable strategy, as object cat-
egory detectors, for example, may yield similar responses.

sp1 sp2 sp3 mean acc.
wei+flat 86.47 85.56 86.27 86.10
wei+1 level 88.00 86.33 87.20 87.18
wei+2 levels 88.20 86.50 87.33 87.34
wei+3 levels 88.37 86.80 87.52 87.56

Table 3: Evaluation of the flat single-level weighted mean (wei+flat)
versus different hierarchical levels of weighted mean pooling on
HMDB-51. wei+1 level indicates that weighted mean pooling is ap-
plied solely to the four object detectors in ODF. wei+2 levels extends
this by applying weighted pooling to both ODF and SDF. wei+3 levels
adds a final weighted combination of HAF, BoW, FV, OFF, ODF, and
SDF.
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Fig. 7: Visualization of the Golden-section search for the weighting
mechanism at the final level. (top) Depicts the convergence of the lower
and upper estimates, β (l) and β (u), over the course of training epochs.
(bottom) For each epoch, β is set as the midpoint β =0.5(β (l)+β (u)),
and the corresponding validation score (mAP) is evaluated on MPII
(split1). As training progresses, mAP steadily improves and stabilizes,
reflecting the convergence of the Golden-section search algorithm.

Therefore, they should first be reweighted for the best ‘com-
bined detector’ performance before being combined with
more complementary modalities.

Finally, Figure 7 (top) demonstrates how our Golden-
search selects the optimal β on the MPII validation set
(split1). Figure 7 (bottom) shows the corresponding valida-
tion mAP (note that this is not the mAP score on the test
set). For the first 10 epochs we use β =0, and we start the
Golden-search from epoch 11.

Input to CENet. The input to our CENet can either be the
intermediate representation X(rgb) from the backbone or the
concatenated feature representations ψ̃ψψ from hallucination
(see Sec. 4.6), we compare the performance of these two
variants on Charades. As shown in Table 7, using concate-
nated feature representations as input to CENet improves
the performance of AR by more than 0.5% compared to
the use of intermediate representation. Both variants use the
same experimental settings, i.e., the same number of multi-
ple sketches (MSK) and the same feature dimensionality d
through sketching, across all four backbones. The reasons
for this improvement are: (i) the intermediate representa-
tions are ‘raw’ and not sufficiently representative for CENet
to identify the relationships between each feature descriptor
and its corresponding uncertainty, and (ii) the hallucinated



16 Lei Wang, Piotr Koniusz

features are more informative than the intermediate repre-
sentations. Therefore, we use the hallucinated feature repre-
sentations as input to CENet (see Fig. 2).
Sketched feature dimension per modality. We evaluate the
effects of feature dimension d through sketching on both
Charades and EPIC-KITCHENS-55. On Charades, d=128
achieves almost identical performance to d = 256 (within
0.3% difference, see Table 7) across all backbones. Consid-
ering both the performance gain and the computational cost,
we choose d=128 for subsequent experiments on Charades.
On the validation set of EPIC-KITCHENS-55, with Assem-
bleNet++ and VTN backbones, d =128 yields very similar
results to d = 256. However, with I3D and FASTER back-
bones, d =128 decreases performance by more than 0.5%.
Thus, for the seen and unseen test protocols, we choose d=
128 for AssembleNet++ and VTN backbones and d = 256
for I3D and FASTER backbones to achieve better perfor-
mance.
Multiple sketches. On Charades, we observe that using
more multiple sketches (MSK) helps improve AR perfor-
mance. Specifically, 4× MSK outperforms 2× MSK by
0.2%, and 8× MSK outperforms 4× MSK by 0.9%. How-
ever, the improvement becomes smaller when 12× MSK
is used compared to 8× MSK across all backbones (ap-
proximately 0.1% improvement, see Table 7), except the
FASTER framework. Considering both the performance
gain and computational cost, we set the number of MSK to
8 for the experiments on EPIC-KITCHENS-55 and Toyota
Smarthome.

5.3 Discussion on Fine-grained Action Recognition

In this section, we choose the I3D backbone to discuss
fine-grained AR.
MPII. Table 6 shows a ∼ 3.0% mAP improvement over
the (DEEP-HAL) baseline due to the detectors capturing
human-object interaction, which helps model fine-grained
AR. Additionally, incorporating skeleton and audio modali-
ties further improves the performance by approximately 1%,
even though these modalities are not available in the MPII
dataset.
Charades. Table 7 (top) presents the relative gains of our
hallucination pipeline using the I3D backbone. We evalu-
ate both (ODF) and (SDF) with 512-dimensional sketching
(SK512) and observe that ODF outperforms SDF, with both
methods surpassing the baseline (DEEP-HAL) [162].

We also observe that combining ODF and SDF (with
SK512) achieves a 49.1% mAP, representing a ∼ 6% gain
over the baseline. This demonstrates the high complemen-
tarity of ODF and SDF. Using a larger sketch (ODF/SDF,
SK1000) results in a 50.1% mAP, which closely matches
the performance of (DEEP-HAL with ODF/SDF (exact),

Backbone Modality Hal. Mean
BoW/FV/OFF ODF SDF GSF AF loss acc.(%)

I3D

- 74.8
✓ MSE 83.3
✓ ✓ MSE 84.3
✓ ✓ MSE 83.9
✓ ✓ ✓ MSE 85.2
✓ ✓ ✓ MSE 87.0
✓ ✓ ✓ MSE 87.6
✓ ✓ ✓ ✓ MSE 88.0
✓ ✓ ✓ ✓ ✓ MSE 88.2
✓ ✓ ✓ ✓ ✓ Uncert. 88.6

VTN-MobileNet

- 59.2
✓ MSE 67.3
✓ Uncert. 68.1
✓ ✓ ✓ Uncert. 70.9
✓ ✓ ✓ ✓ Uncert. 72.2
✓ ✓ ✓ ✓ ✓ MSE 71.9
✓ ✓ ✓ ✓ ✓ Uncert. 72.5

VTN-ResNet

- 63.1
✓ MSE 73.3
✓ Uncert. 75.2
✓ ✓ ✓ Uncert. 77.0
✓ ✓ ✓ ✓ Uncert. 78.3
✓ ✓ ✓ ✓ ✓ MSE 77.9
✓ ✓ ✓ ✓ ✓ Uncert. 78.6

FASTER

- 74.9
✓ MSE 80.3
✓ Uncert. 81.9
✓ ✓ ✓ Uncert. 83.7
✓ ✓ ✓ ✓ Uncert. 85.8
✓ ✓ ✓ ✓ ✓ MSE 85.6
✓ ✓ ✓ ✓ ✓ Uncert. 86.2

ADL+I3D 81.5% [151] Full-FT I3D 81.3% [15]
EvaNet (Ensemble) 82.3% [115] PA3D + I3D 82.1% [177]
DEEP-HAL (exact) 82.50% [162] DEEP-HAL 82.48% [162]

Table 4: Evaluation results for (top) our proposed methods and (bot-
tom) comparisons with state-of-the-art approaches on HMDB-51.

50.16%), where ‘exact’ denotes late fusion by concatenation
of ODF and SDF streams with the DEEP-HAL stream fed
into PredNet. The matching results between (DEEP-HAL
with ODF/SDF (SK1000)) and (DEEP-HAL+ODF/SDF
(exact)) show that we can hallucinate ODF and SDF at test
time while maintaining full performance, thus saving com-
putational time and boosting reults on Charades by ∼ 6%
over the baseline. Moreover, with additional skeleton (GSF)
and audio information (AF), our model achieves 52.1%,
further improving performance by approximately 2%. In
contrast, SlowFast networks [43] and AssembleNet [125]
achieve 45.2% and 51.6% on Charades, respectively.
EPIC-KITCHENS-55.Table 8 shows the experimental re-
sults. Our model learns human-like semantic features due
to ODF/SDF, and even skeleton and audio information can
be synthesized. There is no evidence suggesting that a
backbone alone can discover these features without guid-
ance. Comparing MPII (3748 clips) with the larger EPIC-
KITCHENS-55 (39594 clips), both related to cooking
tasks, SDF+ODF boosts MPII from 81.8 to 84.8%, and
boosts EPIC-KITCHENS-55 from 32.51% (DEEP-HAL) to
35.88% (on the seen classes protocol), and from 22.33%
(DEEP-HAL) to 27.32% (on the unseen classes protocol).
This demonstrates a ∼3% improvement on both MPII and
EPIC-KITCHENS-55, with EPIC-KITCHENS-55 contain-
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Backbone Modality Hal. Mean
BoW/FV/OFF ODF SDF AF loss acc. (%)

I3D

- 89.9
✓ MSE 92.6
✓ ✓ MSE 93.2
✓ ✓ MSE 92.8
✓ ✓ ✓ MSE 94.4
✓ ✓ ✓ Uncert. 94.9
✓ ✓ ✓ ✓ MSE 95.5
✓ ✓ ✓ ✓ Uncert. 96.0

VTN-ResNet

- 85.0
✓ MSE 89.7
✓ ✓ ✓ MSE 90.1
✓ ✓ ✓ Uncert. 90.3
✓ ✓ ✓ ✓ MSE 92.0
✓ ✓ ✓ ✓ Uncert. 92.8

FASTER

- 90.1
✓ MSE 93.0
✓ ✓ ✓ MSE 93.2
✓ ✓ ✓ Uncert. 93.8
✓ ✓ ✓ ✓ MSE 94.9
✓ ✓ ✓ ✓ Uncert. 95.3

T-ResNet 87.6% [45] ADL I3D 91.7% [151]
DEEP-HAL 92.6% [162] MSOE-two-stream 91.9% [57]

Table 5: Evaluation results for (top) our proposed methods and (bot-
tom) comparisons with state-of-the-art approaches on YUP++. Note
that GSF is not applicable to this dataset.

Backbone Modality Hal. mAP(%)
BoW/FV/OFF ODF SDF GSF AF loss

I3D

- 74.8
✓ MSE 80.4
✓ ✓ ✓ MSE 84.8
✓ ✓ ✓ Uncert. 85.6
✓ ✓ ✓ ✓ Uncert. 86.2
✓ ✓ ✓ ✓ ✓ MSE 86.0
✓ ✓ ✓ ✓ ✓ Uncert. 86.5

VTN-ResNet

- 66.3
✓ ✓ ✓ Uncert. 75.5
✓ ✓ ✓ ✓ Uncert. 76.1
✓ ✓ ✓ ✓ ✓ Uncert. 76.7

FASTER

- 75.5
✓ ✓ ✓ Uncert. 82.9
✓ ✓ ✓ ✓ Uncert. 83.7
✓ ✓ ✓ ✓ ✓ Uncert. 84.3

KRP-FS+IDT 76.1% [24] GRP+IDT 75.5% [22]
I3D+BoW/OFF MTL 79.1% [162] DEEP-HAL 81.8% [162]

Table 6: Evaluation results for (top) our proposed methods and (bot-
tom) comparisons with state-of-the-art approaches on the MPII dataset.

ing nearly 10× more clips than MPII. With the addition
of GSF and AF, we achieve an extra performance gain of
around 8%.

Toyota Smarthome. Table 9 presents results for Toyota
Smarthome. With ODF/SDF, our model outperforms I3D
baseline by 4% on average. Since this dataset provides reli-
able skeleton information, adding GSF improves the perfor-
mance by an additional 4%. This suggests that robust skele-
tons enhance AR. Moreover, hallucinating AF further boosts
performance by 1–3%. Even with the I3D backbone (using
only RGB), our model still achieves very competitive re-
sults, outperforming recent methods such as VPN [33] and
UNIK [180] by 3% and 6% (on average), respectively.

Backbone Modality SK num. of input to mAP
BoW/FV OFF ODF SDF GSF AF dim. d MSK CENet (%)

I3D

- - - 37.2
✓ 1000 - - 41.9
✓ ✓ 1000 2 - 42.0
✓ ✓ 1000 4 - 42.2
✓ ✓ 1000 8 - 43.1
✓ ✓ ✓ 512 8 - 47.2
✓ ✓ ✓ 512 8 - 45.3
✓ ✓ ✓ ✓ 512 8 - 49.1
✓ ✓ ✓ ✓ 1000 8 - 50.1
✓ ✓ ✓ ✓ ✓ 512 8 - 50.9
✓ ✓ ✓ ✓ ✓ 256 8 - 50.5
✓ ✓ ✓ ✓ ✓ 128 8 - 50.3
✓ ✓ ✓ ✓ ✓ 128 8 X(rgb) 50.5
✓ ✓ ✓ ✓ ✓ 128 8 ψ̃ψψ 51.0
✓ ✓ ✓ ✓ ✓ 128 12 ψ̃ψψ 51.0
✓ ✓ ✓ ✓ ✓ ✓ 512 8 - 51.6
✓ ✓ ✓ ✓ ✓ ✓ 256 8 - 51.5
✓ ✓ ✓ ✓ ✓ ✓ 128 8 - 51.2
✓ ✓ ✓ ✓ ✓ ✓ 128 8 X(rgb) 51.3
✓ ✓ ✓ ✓ ✓ ✓ 128 8 ψ̃ψψ 52.0
✓ ✓ ✓ ✓ ✓ ✓ 128 12 ψ̃ψψ 52.1

AssembleNet++

- - - 53.8
- - - 56.7∗

✓ ✓ ✓ ✓ 512 8 - 55.8
✓ ✓ ✓ ✓ 512 8 - 60.7∗
✓ ✓ ✓ ✓ 1000 8 - 56.9
✓ ✓ ✓ ✓ 1000 8 - 62.0∗
✓ ✓ ✓ ✓ ✓ 512 8 - 58.0
✓ ✓ ✓ ✓ ✓ ✓ 512 8 - 58.5
✓ ✓ ✓ ✓ ✓ ✓ 256 8 - 58.2
✓ ✓ ✓ ✓ ✓ ✓ 128 8 - 58.0
✓ ✓ ✓ ✓ ✓ ✓ 128 8 X(rgb) 58.3
✓ ✓ ✓ ✓ ✓ ✓ 128 8 X(rgb) 64.7∗
✓ ✓ ✓ ✓ ✓ ✓ 128 8 ψ̃ψψ 58.8
✓ ✓ ✓ ✓ ✓ ✓ 128 12 ψ̃ψψ 59.0
✓ ✓ ✓ ✓ ✓ ✓ 128 12 ψ̃ψψ 65.3∗

VTN

- - - 43.5
✓ ✓ ✓ ✓ 512 8 - 48.3
✓ ✓ ✓ ✓ 256 8 - 48.0
✓ ✓ ✓ ✓ 128 8 - 47.8
✓ ✓ ✓ ✓ ✓ 128 8 - 50.2
✓ ✓ ✓ ✓ ✓ ✓ 128 8 - 53.2
✓ ✓ ✓ ✓ ✓ ✓ 128 8 X(rgb) 53.7
✓ ✓ ✓ ✓ ✓ ✓ 128 8 ψ̃ψψ 54.3
✓ ✓ ✓ ✓ ✓ ✓ 128 12 ψ̃ψψ 54.5

FASTER

- - - 40.7
✓ ✓ ✓ ✓ 512 8 - 46.0
✓ ✓ ✓ ✓ 256 8 - 45.2
✓ ✓ ✓ ✓ 128 8 - 45.0
✓ ✓ ✓ ✓ ✓ 128 8 - 47.8
✓ ✓ ✓ ✓ ✓ ✓ 128 8 - 49.7
✓ ✓ ✓ ✓ ✓ ✓ 128 8 X(rgb) 51.2
✓ ✓ ✓ ✓ ✓ ✓ 128 8 ψ̃ψψ 52.7
✓ ✓ ✓ ✓ ✓ ✓ 128 12 ψ̃ψψ 53.3

LFB 42.5% [174] ActionCLIP 44.3% [168]
En-VidTr-L 47.3% [187] MoViNet-A4 48.5% [81]

SlowFast 45.2% [43] AssembleNet 51.6% [125]
AssembleNet-101 58.6% [125] AssembleNet++ 50 59.8% [124]
*These results are obtained without pre-training on Kinetics-400.

Table 7: Evaluation results for (top) our methods and (bottom) com-
parisons with state-of-the-art approaches on the Charades dataset.

5.4 Discussion on the Uncertainty Learning

We now evaluate the performance of using MSE and
uncertainty learning for feature hallucination. We observe
that uncertainty learning helps improve the AR performance
across all datasets. On HMDB-51 and YUP++ (Table 4
and 5), uncertainty learning loss improves performance by
approximately 1% on average for all backbones. On MPII
(Table 6), hallucinating additional ODF/SDF with uncer-
tainty learning outperforms using MSE by 0.8% with the
I3D backbone. Furthermore, hallucinating all features with
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Backbone Modality SK Verbs Nouns Actions+BoW/FV/OFF ODF/SDF GSF AF dim. d

Validation

I3D

✓ 1000 55.4 33.3 21.5
✓ ✓ 512 59.2 38.1 26.4
✓ ✓ 256 59.0 37.7 26.0
✓ ✓ 128 58.6 37.1 25.6
✓ ✓ ✓ 512 62.0 40.9 30.5
✓ ✓ ✓ 256 61.7 40.4 30.3
✓ ✓ ✓ 128 60.9 39.0 29.7

AssembleNet++

✓ 512 57.2 34.8 23.2
✓ 256 56.8 34.6 22.9
✓ 128 56.6 34.0 22.5
✓ ✓ 128 63.5 41.2 40.9
✓ ✓ ✓ 128 68.2 46.1 36.3

VTN

✓ 256 54.3 32.7 19.8
✓ 128 54.0 32.6 19.7
✓ ✓ 256 58.0 36.2 25.2
✓ ✓ 128 57.6 36.0 24.7
✓ ✓ ✓ 256 60.0 38.8 29.4
✓ ✓ ✓ 128 59.6 38.2 29.3

FASTER

✓ 256 55.0 33.1 20.9
✓ 128 54.2 32.7 19.5
✓ ✓ 256 58.5 36.7 24.3
✓ ✓ 128 58.1 36.0 23.9
✓ ✓ ✓ 256 62.0 41.8 31.5
✓ ✓ ✓ 128 61.3 41.6 31.0

LFB Max [174] 52.6 31.8 22.8
WeakLargeScale [51] 58.4 36.9 26.1

Test s1 (seen)
I3D ✓ ✓ ✓ 256 70.0 50.7 38.7
AssembleNet++ ✓ ✓ ✓ 128 76.5 57.2 47.9
VTN ✓ ✓ ✓ 128 67.7 49.2 38.0
FASTER ✓ ✓ ✓ 256 71.0 51.1 39.2

TSN Fusion [31] 48.2 36.7 20.5
LFB Max [174] 60.0 45.0 32.7

WeakLargeScale [51] 65.2 45.1 34.5

Test s2 (unseen)
I3D ✓ ✓ ✓ 256 61.7 40.0 30.3
AssembleNet++ ✓ ✓ ✓ 128 68.9 48.2 39.1
VTN ✓ ✓ ✓ 128 58.8 39.6 29.0
FASTER ✓ ✓ ✓ 256 63.6 40.9 30.9

TSN Fusion [31] 39.4 22.7 10.9
LFB Max [174] 50.9 31.5 21.2

WeakLargeScale [51] 57.3 35.7 25.6

Table 8: Experimental results on the EPIC-KITCHENS-55 dataset.

uncertainty learning improves performance by an additional
0.5%.

As mentioned earlier, skeleton data often contains noise,
which affects the GSF, we evaluate the impact of noisy GSF
on AR. On Toyota Smarthome, hallucinating GSF improves
AR by 4–5% across all backbones, as this dataset provides
skeleton data. Using GSF on Charades improves results by
2–3% on average, despite Charades not having skeleton
data; in this case, we use the GSF stream pre-trained on
skeleton data from Toyota Smarthome for hallucination. The
use of skeleton information improves AR performance by
approximately 1% and 4% on MPII and EPIC-KITCHENS-
55, respectively. Note that these two cooking datasets are
fine-grained AR datasets focusing on specific regions of ac-
tions (e.g., hands), making it more difficult to obtain full hu-
man skeleton data. Nevertheless, our proposed model, with
uncertainty, is still able to hallucinate some skeleton features
even without full human skeleton data.

Backbone Modality Hal. CS CV1 CV2+BoW/FV/OFF ODF/SDF GSF AF loss

I3D

- 53.4 34.9 45.1
✓ MSE 57.6 38.2 49.3
✓ Uncert. 58.2 39.0 50.1
✓ ✓ Uncert. 62.3 43.1 55.2
✓ ✓ ✓ Uncert. 65.1 44.3 56.3

AssembleNet++

- 63.6 45.2 55.8
✓ MSE 65.5 48.0 59.0
✓ Uncert. 66.0 48.7 59.9
✓ ✓ Uncert. 70.8 52.7 65.5
✓ ✓ ✓ Uncert. 72.3 54.1 68.8

VTN

- 53.0 33.2 43.7
✓ MSE 57.0 38.2 48.7
✓ Uncert. 57.8 39.3 49.2
✓ ✓ Uncert. 61.3 43.0 54.1
✓ ✓ ✓ Uncert. 62.6 43.9 55.7

FASTER

- 53.7 35.0 46.7
✓ MSE 59.1 41.2 53.2
✓ Uncert. 60.0 42.1 54.0
✓ ✓ Uncert. 63.9 46.5 57.7
✓ ✓ ✓ Uncert. 65.5 48.8 59.4

Separable STA [32] 54.2 35.2 50.3
NPL [117] - 39.6 54.6
VPN [33] 60.8 43.8 53.5

UNIK [180] 63.1 22.9 61.2

Table 9: Experimental results on the Toyota Smarthome dataset.

Additionally, videos typically contain background
sounds that are irrelevant to the actions observed, such as
music, TV, or the noise from coffee or washing machines.
In Table 8, we see that the inclusion of audio features boosts
AR by more than 3% across all backbones. The largest per-
formance gain (around 5%) is observed when using the As-
sembleNet++ backbone. Our experimental results demon-
strate that these irrelevant sounds do not confuse the model,
highlighting the robustness of our approach to noisy and un-
constrained audio sources.

5.5 Discussion on Modalities

We observe that using additional modalities helps im-
prove AR. The performance gain from the use of ODF/SDF
is approximately 2%, 1.5%, 4%, and 3% on HMDB-51,
YUP++, MPII, and Charades, respectively. On fine-grained
AR tasks, the performance gain from using ODF/SDF av-
erages around 3%. This suggests that object detection and
saliency information contribute significantly to AR, partic-
ularly in fine-grained AR, where the surrounding objects of
performers provide important cues to actions.

The inclusion of skeleton features further improves per-
formance by approximately 1–2% on average for HMDB-
51, MPII and Charades. On EPIC-KITCHENS-55 and Toy-
ota Smarthone, the performance gain from skeleton features
is more substantial, exceeding 4% and 3–4%, respectively.
Since YUP++ is a natural scene classification dataset and
does not require skeleton information, we do not hallucinate
skeleton features for this dataset.
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K400 K600 SSv2
VideoMAE V2 [154] 87.2 88.8 77.0
+ BoW/FV 87.5 88.9 77.0
+ BoW/FV + OFF 87.6 89.1 77.3
+ BoW/FV + OFF + ODF/SDF 87.5 89.1 77.4
InternVideo2s1 [170] 91.3 91.4 77.1
+ BoW/FV 91.8 91.6 77.0
+ BoW/FV + OFF 91.8 91.7 77.2
+ BoW/FV + OFF + ODF/SDF 91.6 91.5 77.3

Table 10: Experimental results on the large-scale Kinetics-400 (K400),
Kinetics-600 (K600), and Something-Something V2 (SSv2) datasets.
For both VideoMAE V2 (ViT-g) and InternVideo2s1 (1B), finetuned
model weights specific to each dataset are used. Ground-truth de-
scriptors for BoW/FV, OFF, and ODF/SDF used in feature hallucina-
tion are generated using 80,000 training samples from Mini-Kinetics-
200 [176], balancing computational cost and feature storage con-
straints.

We also find that the use of sound features further boosts
AR performance. Adding sound information increases per-
formance by approximately 3.5% on average for EPIC-
KITCHENS-55 and Toyota Smarthome. This is expected, as
visual and audio modalities are often highly correlated. For
fine-grained AR, audio information is especially important
for action-related tasks. On Charades, the use of the VTN
backbone yields the largest performance gain (around 3%)
for hallucinated sound information, as VTN is particularly
well-suited for handling audio features. On HMDB-51 and
MPII, the performance gain is smaller (around 0.5–1%) due
to the lack of reliable sound information. For natural scene
classification on YUP++, the sound features improve perfor-
mance by 1–2%.

Our analysis highlights that AR benefits from additional
modalities such as skeleton and sound, in addition to the
commonly used RGB and optical flow videos. Our proposed
model can synthesize multiple modalities through a simple
hallucination step, boost AR performance without introduc-
ing extra computational cost during the test stage.

5.6 Discussion on the Large-scale Datasets

We also evaluate our model on three widely-used large-
scale action recognition datasets: Kinetics-400, Kinetics-
600, and Something-Something V2. The experimental re-
sults are summarized in Table 10.

To address computational costs and feature storage
constraints, we use 80,000 training samples from Mini-
Kinetics-200 [176] to generate ground-truth descriptors for
BoW, FV, OFF, ODF and SDF, which are used for fea-
ture hallucination. For this process, we use our uncertainty
loss and set the sketching dimension to d = 128 for the
power-normalized ground-truth descriptors. These descrip-
tors are hallucinated from the pooled spatiotemporal to-
ken embeddings of pretrained VideoMAE V2 (ViT-g) and

InternVideo2s1-1B encoders. After training the hallucina-
tion streams, we freeze their weights and proceed to fine-
tune the HAF and PredNet components for each dataset.
This approach allows HAF and PredNet to adapt to the hal-
lucinated features of different datasets, enhancing both com-
putational and storage efficiency.

Notably, despite the hallucinated streams being trained
on feature descriptors derived from a subset of Kinetics-
400 (Mini-Kinetics-200), they still enhance action recogni-
tion performance on large-scale datasets. Interestingly, the
improvements brought by BoW/FV and BoW/FV+OFF are
particularly significant, yielding gains of over 0.4%, 0.3%,
and 0.1% on Kinetics-400, Kinetics-600, and Something-
Something V2, respectively. Adding ODF and SDF con-
tributes only marginal improvements. This is likely because
both VideoMAE V2 and InternVideo2 are self-supervised
learning frameworks that effectively capture deep semantic
features through spatiotemporal masking and video frame
reconstruction. However, handcrafted descriptors like those
encoded via BoW and FV still play a valuable role in
boosting performance, even when derived from a subset of
Kinetics-400 and pretrained hallucinated streams.

On Something-Something V2, we observe that BoW/FV
does not improve performance for either VideoMAE V2 or
InternVideo2. However, incorporating OFF significantly en-
hances performance, underscoring the challenging nature of
Something-Something V2, which requires robust temporal
reasoning. Motion-related information, such as that captured
by OFF, proves crucial for these improvements.

In contrast, on Kinetics-400 and Kinetics-600, adding
OFF results in negligible performance gains. This indicates
that motion information is far less relevant for the Kinetics
datasets, as also demonstrated in recent studies [111, 52].
These findings highlight the differing demands of these
datasets, with temporal motion cues playing a pivotal role
in Something-Something V2 but being less critical for the
Kinetics datasets. This highlights the need for video under-
standing researchers to collect and curate datasets where
motion, temporal information, and reasoning are crucial,
fostering advancements that better serve the video under-
standing research community.

5.7 Discussion on Action Recognition Backbones

We observe that the top performance of our model de-
pends on the backbone used. Based on our comparisons, the
AssembleNet++ backbone performs the other three back-
bones (I3D, VTN and FASTER). Models with Assem-
bleNet++ achieve a performance boost of approximately
13%, 5%, and 10% over I3D and FASTER backbones on
Charades, EPIC-KITCHENS-55, and Toyota Smarthome,
respectively.
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The VTN backbone (with ResNet) performs slightly
worse than the other three backbones (AssembleNet, I3D
and FASTER), as it is a lightweight model designed
for AR on hardware with limited computational power
(e.g., mobile devices). The FASTER framework is also a
lightweight model that avoids redundant computation be-
tween neighboring clips. However, it uses an efficient model
(R(2+1)D-50) for subtle motions, performing better than
VTN by approximately 8%, 3%, 8%, 2%, and 4% on
HMDB-51, YUP++, MPII, EPIC-KITCHENS-55, and Toy-
ota Smarthome, respectively. On charades, VTN performs
slightly better than FASTER (by about 1%). This can be at-
tributed to: (i) the lack of available skeleton data and unreli-
able pose estimators on this dataset (due to pose complexity
and mobile camera movements), (ii) noise in the sound data,
and (iii) VTN’s ability to handle time series data (e.g., audio
and skeletons) more effectively.

We also observe that, for the hallucination task, the As-
sembleNet++ backbone generally outperforms the FASTER
and I3D backbones, which perform equally well and both
outperform VTN. This is expected because: (i) Assem-
bleNet++ is optimized for hallucination tasks, (ii) both
FASTER and I3D backbones use (2+1)D or 3D ConvNets,
which are better suited for hallucinating spatio-temporal fea-
tures (e.g., OFF, GSF), and (iii) VTN only uses 2D CNNs for
video frame embedding, which is less efficient compared to
the use of (2+1)D and 3D CNNs.

Although the VTN backbone performs worse than the
others, its performance remains competitive compared to
most existing state-of-the-art methods, especially on fine-
grained AR tasks such as Charades, EPIC-KITCHENS-55,
and Toyota Smarthome (Table 7, 8 and 9).

Recent self-supervised pretraining frameworks, such
as VideoMAE V2 and InternVideo2 (Table 10), have
emerged as powerful video learners, effectively capturing
self-supervisory features that were traditionally the domain
of handcrafted methods. These video foundation models,
pretrained on large-scale visual and motion datasets, are de-
signed to extensively use spatiotemporal information, ex-
celling in various video processing tasks. Interestingly, de-
spite the remarkable capabilities of these models, we ob-
serve that handcrafted descriptors still provide a meaningful
performance boost. This can be attributed to their unique de-
sign and specialized focus, which complement the broader
but more generalized feature representations learned by
these video foundation models.

Our approach is ‘orthogonal’ to these developments,
which focus on extensive mining for combinations of neu-
ral blocks/dataflows to obtain an ‘optimal’ pipeline. We
achieve similar results with a simpler approach based on
self-supervised learning. Our pipeline is more lightweight
by comparison, as it does not require computations of opti-
cal flow, detections, or segmentation masks at test time.

DET1: DET2: DET3: DET4: ODF
Inception Inception ResNet101 NASNet total

V2 ResNet V2 AVA (+SVD)
sec. per frame 0.07 0.38 0.10 0.91 1.46 (+0.09)
s.p.c. HMDB-51 6.5 35.3 9.3 84.5 135.6 (+0.5)
s.p.c. YUP++ 9.7 52.7 13.9 126.2 202.5 (+0.8)
s.p.c. MPII 12.4 67.1 17.7 160.8 258.0 (+1.3)
s.p.c. Charades 21.0 114.2 30.0 273.5 438.7 (+2.6)
s.p.c. EPIC-Kitchens 20.3 110.4 29.0 264.3 424.0 (+2.6)
s.p.c. Toyota Smarthome 16.9 92.0 24.2 220.2 353.3 (+2.1)

Table 11: Statistics for the object detectors used in our experiments.
The table provides timings such as seconds per frame (denoted as sec.
per frame) and seconds per clip (denoted as s.p.c.) for detectors used
by ODF. Additionally, the total time incurred by a combined detec-
tor (ODF total) is shown. We also report the time taken for the full
Singular Value Decomposition (SVD) and all other ODF operations,
assuming approximately 5 detections per frame.

SAL1: SAL2: SDF ODF+SDF
MNL ACLNet total total

(+Eq. (17)) (+Eq. (17)+SVD)
sec. per frame 0.60 0.30 0.90 (+0.003) 2.36 (+0.1)
s.p.c. HMDB-51 55.7 27.9 83.6 (+0.3) 219.2 (+0.8)
s.p.c. YUP++ 83.2 41.6 124.8 (+0.4) 327.3 (+1.2)
s.p.c. MPII 106.0 53.0 159.0 (+0.5) 417.0 (+1.8)
s.p.c. Charades 180.3 90.1 270.4 (+0.9) 709.1 (+3.5)
s.p.c. EPIC-Kitchens 174.3 87.1 261.4 (+0.9) 685.4 (+2.9)
s.p.c. Toyota Smarthome 145.2 72.6 217.8 (+0.7) 571.1 (+2.4)

Table 12: Statistics for the saliency detectors used in our experiments.
The table presents timings such as seconds per frame (sec. per frame)
and seconds per clip (s.p.c.) for detectors used by SDF. The total time
incurred by the combined detector (SDF total) is also provided. Addi-
tionally, we report the time taken for the descriptor in Eq. (17) and all
other SDF operations. Finally, the combined time for both ODF and
SDF operations (SDF+ODF total) is included.

5.8 Computational Costs and Efficiency

Table 11 shows the timing for object detectors used by
ODF descriptors during training. The detections from all
four object detectors we use take approximately 1.47 sec-
onds per frame. Therefore, obtaining four ODF descriptors
per clip (a uniquely annotated sequence for training or clas-
sification) takes between 136 and 441 seconds. Table 12
presents the timing for saliency detectors used in our SDF
descriptors during training. The detections for both saliency
detectors take around 0.9 seconds per frame, with obtaining
both SDF descriptors per clip taking between 84 and 271
seconds.

It is important to note that the majority of the com-
putational cost arises from the detectors rather than from
the ODF and SDF descriptors, whose computational cost is
minimal. Moreover, the idea of learning these computation-
ally expensive representations during training proves highly
valuable. While the total computation time per training clip
ranges from 220 to 712 seconds, these representations are
obtained virtually for free (in milliseconds) during testing,
thanks to the DET1, ..., DET4 and SAL1/SAL2 units, as
shown in Figure 2. Assuming that 25% of clips in charades
are used for testing, this results in a savings of 137 days of



Feature Hallucination for Self-supervised Action Recognition 21

Video IncV2 IncResV2 Res101 NASNet MNL ACLNet
HMDB-51 2.2 GB 64.5 GB 64.7 GB 69.3 GB 69.9 GB 6.7 GB 2.4 GB
YUP++ 788.6 MB 12.9 GB 13.5 GB 4.2 GB 14.6 GB 1.6 GB 687.7 MB
MPII 8.7 GB 65.7 GB 83.8 GB 48.2 GB 97.3 GB 11.3 GB 2.5 GB
Charades 59.0 GB 453.6 GB 473.1 GB 155.8 GB 490.2 GB 210.8 GB 76.6 GB

Table 13: Storage statistics for original videos and extracted fea-
tures. We present the storage sizes of raw object detection features ex-
tracted using Inception V2 (IncV2), Inception ResNet V2 (IncResV2),
ResNet101 (Res101), and NASNet, as well as raw saliency detection
features obtained from MNL and ACLNet. All extracted features are
stored in HDF5 format, while the original videos are in formats such
as AVI.

no. of av. frame no. of no. of no. of
frames count videos clips classes

HMDB-51 628635 92.91 6766 6766 51
YUP++ 166463 138.72 1200 1200 20
MPII 662394 176.73 44 3748 60
Charades 19978821 300.51 9848 66500 157
EPIC-Kitchens ∼ 11.5M 290.43 432 39596 149
Toyota Smarthome 3.9M 242.01 16115 16115 31
Kinetics-400 54M 180 300K 300K 400
Kinetics-600 90M 180 500K 500K 600
Something-Something V2 22M 100 220K 220K 174

Table 14: Statistics of the datasets used in our experiments.

computation on a single GPU (or the equivalent of 1 day’s
savings on 137 GPUs). Given the 6% improvement on Cha-
rades over the baseline (without ODF and SDF descriptors),
coupled with these substantial computational savings, we
believe these statistics highlight the value of our approach.

5.9 Limitations and Challenges

While our framework performs well on several bench-
marks, it does face practical limitations, particularly in terms
of computational costs, scalability, and sensitivity to param-
eter choices.

Computational complexity is a major challenge, espe-
cially during the training stage when extracting ground-truth
feature descriptors, such as ODF and SDF (see Table 11 and
Table 12). These feature extraction processes can be compu-
tationally expensive and result in high storage consumption,
particularly for large-scale datasets. For example, the origi-
nal Charades dataset is 59.0 GB, whereas the extracted ob-
ject detection and saliency detection features require a total
of 1.54 TB and 287.4 GB of storage, respectively, which are
approximately 26.7 and 4.87 times the size of the original
videos (see Table 13). Table 14 presents basic statistics for
the datasets used in our experiments. Notebly, Kinetics-400,
Kinetics-600 and Something-Something V2 are among the
largest datasets in our study, with approximately 54M, 90M,
and 22M frames, respectively.

The framework’s sensitivity to parameter choices also
plays a crucial role in its effectiveness. For instance, the
sketch size (d′) is key in determining both computational
efficiency and the quality of feature representation. A small

d′ can introduce noise, leading to poor approximations of
the original feature set, which may negatively impact the
model’s performance.

Additionally, the framework faces challenges when ap-
plied to recent self-supervised pretraining frameworks such
as VideoMAE V2 and InternVideo2. These models can use
self-supervised learning techniques and are trained end-
to-end, eliminating the need for manually extracted hand-
crafted features during training. However, these handcrafted
features, although not required, still provide significant im-
provements to these models. The heavy computational cost
and storage constraints of extracting the full set of hand-
crafted features make it infeasible to fully exploit their po-
tential (see the total number of frames in Table 14), which
in turn complicates training models with the complete set of
semantically rich features. This issue limits the ability to op-
timize hallucination stream weights, making training more
challenging.

Finally, robustness to noisy data is another potential lim-
itation. In real-world scenarios, noisy or poorly extracted
ground truth features can degrade performance, particularly
in training the hallucination streams. This may lead to poor-
quality hallucinated features during testing, further affecting
the model’s overall effectiveness.

6 Conclusion

In this work, we introduced a novel multimodal action
recognition framework that enhances recognition accuracy
by integrating diverse auxiliary features while reducing re-
liance on computationally expensive handcrafted descriptors
at inference. To guide the model toward action-relevant re-
gions, we proposed two domain-specific descriptors: Ob-
ject Detection Features (ODF), which capture contextual
cues from multiple object detectors, and Saliency Detec-
tion Features (SDF), which emphasize spatial and inten-
sity patterns critical for action understanding. To handle in-
complete multimodal data, we developed a self-supervised
hallucination mechanism that synthesizes missing cues at
test time, enriching feature representations without increas-
ing computational overhead. Furthermore, we incorporated
aleatoric uncertainty modeling and a robust loss function
to mitigate feature noise, improving the robustness of our
model in fine-grained action recognition tasks. Our frame-
work remains compatible with state-of-the-art architec-
tures, including I3D, AssembleNet, Video Transformer Net-
work, FASTER, and recent models such as VideoMAE V2
and InternVideo2. Extensive experiments on Kinetics-400,
Kinetics-600, and Something-Something V2 confirm that
our method achieves state-of-the-art performance, demon-
strating its effectiveness in capturing fine-grained action dy-
namics and advancing multimodal action recognition.
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A Hallucination Quality

Below, we analyze the quality of hallucinated BoW and FV
streams compared to their corresponding ground-truth feature vectors.

Figure 8 presents histograms of the squared differences between
hallucinated features and ground-truth ones. Specifically, we plot his-
tograms of {(ψ̃(bow),mn −ψ(bow),mn)

2,m∈I1000,n∈N }, where m iter-
ates over 1000 features and n spans all videos in the dataset. For clarity,
counts for training and testing splits are normalized by 1000 (the num-
ber of features) and the number of videos in each split, respectively.
The histograms use bins of size 0.01, creating smooth, continuous-like
plots.

Figure 8a demonstrates that during training, our BoW hallucina-
tion unit based on fully connected (FC) layers closely approximates
the ground-truth BoW descriptors. Histograms at epochs 1, 5, 15, and
25 are shown with colors transitioning from red to blue. Early epochs
exhibit a modest peak near the first bin, but as training progresses, this
peak intensifies while subsequent bins diminish. This pattern reflects
the reduction in approximation error over time.

Similarly, Figure 8b illustrates that hallucinated BoW descriptors
also closely approximate ground-truth descriptors in the testing split.
Comparisons between testing and training histograms for BoW, as well
as first- and second-order FV descriptors, reveal only minor differ-
ences. A ratio analysis of testing to training bins shows variations be-
tween 0.8× and 1.25×. For clarity, we omit plots of FV testing split
comparisons, as they align closely with training results.

Figures 8c and 8d show that the first- and second-order FV terms
(FV1 and FV2) are also well-learned by our hallucinating units. The re-
sults are displayed for the training split, as the testing behavior closely
mirrors the training performance.

Finally, Figures 8e, 8f, 8g, and 8h highlight similar learning trends
for BoW training and testing splits, as well as for the first- and second-
order FV terms (training split only), using our hallucination unit based
on FC layers without sketching or power normalization (-SK/PN).

B Visualization using UMAP

Figure 9 presents a UMAP [106] visualization of the YUP++
dataset. In Fig. 9a, the top-left corner shows samples from three
classes, represented in red, green, and blue. These classes exhibit par-
tial overlap in this representation. In contrast, Fig. 9b depicts the same
region, but the samples from the red, green, and blue classes are now
more distinctly separated, indicating improved class-wise clustering.

Figure 10 illustrates a UMAP visualization of the HMDB-51
dataset. In Fig. 10a, the bottom-left corner contains samples from two
overlapping classes, shown in red and blue. However, in Fig. 10b, the
samples from these two classes are better separated, and their respec-
tive clusters appear more clearly delineated, demonstrating improved
class-wise organization in this visualization.

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP
HAF*+BoW halluc. 78.8 75.0 84.1 76.0 77.0 78.3 75.2 77.8

HAF*+BoW hal.+MSK/PN 80.1 79.2 84.8 83.9 80.9 78.5 75.5 80.4
HAF•+BoW halluc. 78.8 78.3 84.2 77.4 77.1 78.3 75.2 78.5

HAF•+BoW hal.+MSK/PN 80.8 80.9 85.0 83.9 82.0 79.8 79.6 81.7

Table 15: Evaluations on MPII. The (HAF*+BoW halluc.) rep-
resents our pipeline using the BoW stream, where (*) indicates
human-centric pre-processing with a 256-pixel height resolution. The
(HAF*+BoW hal.+MSK/PN) extends this pipeline by incorporating
multiple sketches per BoW followed by Power Normalization (PN).
Similarly, (•) denotes human-centric pre-processing with an increased
512-pixel height resolution.

C Higher Resolution Frames on MPII

For the human-centric pre-processing applied to MPII, denoted by
(*), we observe that the bounding boxes used for extracting human
subjects are of low resolution. To address this, we first resize the RGB
frames to 512 pixels in height (instead of 256 pixels), compute the
corresponding optical flow, and then extract the human subjects. This
adjustment effectively increases the resolution by a factor of 2×.

In Table 15, results for (HAF*+BoW halluc.), our pipeline incor-
porating the BoW stream, and (HAF*+BoW hal.+MSK/PN), which in-
cludes multiple sketches and PN, are shown for the standard 256 pixels
height resolution. These results, denoted by (*), are taken from [162].

The (HAF•+BoW halluc.), which also includes the BoW stream,
and (HAF•+BoW hal.+MSK/PN) pipelines are analogous but com-
puted with the increased 512-pixel height resolution, denoted by (•).
As shown in the table, increasing the resolution by 2× before human
detection, extracting higher-resolution subjects, and then scaling them
to a 256-pixel height for yields a 1.3% improvement in accuracy.

D Data Pre-processing

For all video datasets, we apply a data augmentation strategy that
includes random cropping of videos and left-right flips on both RGB
and optical flow frames. During testing, we use center cropping and
avoid flipping.

For the MPII dataset, which involves human-centric pre-
processing, we first apply a human detector. Next, we randomly crop
around the bounding box containing the human subject. This crop is
included in the final sequence. We also allow scaling, zooming in, and
left-right flipping. For longer videos, we sample sequences to create a
64-frame clip. For shorter videos (fewer than 64 frames), we repeat the
sequence multiple times to match the expected input length. Finally,
we scale the pixel values of both RGB and optical flow frames to the
range between -1 and 1.
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Fig. 8: Evaluation of the squared difference between hallucinated and ground-truth representations on HMDB-51 (split 1). Experiments in the top
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Fig. 9: Visualization of the feature space (extracted from PredNet) for DEEP-HAL in Fig. 9a and DEEP-HAL+ODF in Fig. 9b on the YUP++
dataset. For comparison, regions with notable differences are circled to highlight significant changes.
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