High-order Tensor Pooling with Attention for Action Recognition

Lei $Wang^{1,2}$ Ke $Sun^{2,1}$ Piotr Koniusz^{2,1}

¹Australian National University ²Data61/CSIRO

April 9, 2024

イロト イヨト イヨト

э

Motivation

Figure 1: CNN filters respond differently to tree leaf stimuli across spatial regions. **Detecting a leaf reliably predicts a tree's presence**.

Figure 2: Differing **feature counts** challenge classifier generalization. Training with few leaves may lead to misclassification of images with thousands, as boundaries are **sensitive** to observed features.

Motivation (cont.)

Higher-order representations undergo a non-linearity such as **Power Normalization (PN)**: reduce/boost contributions from frequent/infrequent visual stimuli in an image, respectively.

- (a) Initial spectral dist. (b) MaxExp (c) Gamma (d) HDP Figure 3: The intuitive principle of the **Eigenvalue Power Normalization (EPN)**.
 - Given a discrete eigenspectrum following a Beta distribution, the pushforward distribution of MaxExp and HDP are very similar.
 - For small γ , Gamma is also similar to MaxExp and HDP.
 - Note that all three EPN functions whiten the spectrum (map the majority of values to be ∼1) thus removing burstiness (acting as a spectral detector).
 - As EPN prevents burstiness, it replaces counting correlated features with detecting them, thus being invariant to their spatial/temporal extent.

HoT with EPN

EPN performs a spectrum transformation on $\mathcal{X} \in \mathbb{R}^{d_1 \times d_2 \dots \times d_r}$:

$$(\boldsymbol{\lambda}; \boldsymbol{U}_1, ..., \boldsymbol{U}_r) = \mathrm{HOSVD}(\boldsymbol{\mathcal{X}}),$$
 (1)

$$\hat{\boldsymbol{\lambda}} = g(\boldsymbol{\lambda}),$$
 (2)

$$\mathcal{G}(\mathcal{X}) = ((\hat{\boldsymbol{\lambda}} \times_1 \boldsymbol{U}_1) \dots) \times_r \boldsymbol{U}_r,$$
(3)

- Let $\Phi \equiv \{\phi_1, ..., \phi_N \in \mathbb{R}^d\}$ be feature vectors extracted from an instance to classify, *e.g.*, video sequences, images, text documents, *etc*.
- EPN retrieves factors which quantify whether there is at least one datapoint φ_n, n∈I_N, projected into each subspace spanned by r-tuples of eigenvector from matrices U₁=U₂=...=U_r.
- For brevity, assume order r=3, a super-symmetric tensor, and any 3-tuple of eigenvectors u, v, and w from U.
- Note that $\mathbf{u} \perp \mathbf{v}, \mathbf{v} \perp w$ and $\mathbf{u} \perp w$ due to orthogonality of eigenvectors for super-symmetric tensors, *e.g.*, $\mathbf{U}\lambda^{\ddagger}\mathbf{V} = [\mathcal{X}_{:,:,1}, ..., \mathcal{X}_{:,:,d}] \in \mathbb{R}^{d \times d^2}$ where λ^{\ddagger} are eigenvalues of the **unfolded tensor** \mathcal{X} .
- If we have d unique eigenvectors, we can enumerate $\binom{d}{r}$ r-tuples and thus $\binom{d}{r}$ subspaces $\mathbb{R}^{d \times r} \subset \mathbb{R}^{d \times d}$.

HoT with EPN (cont.)

Our super-symmetric tensor descriptor is:

$$\boldsymbol{\mathcal{X}} = \frac{1}{N} \sum_{n \in \mathcal{I}_N} \uparrow \otimes_r \boldsymbol{\phi}_n, \tag{4}$$

The 'diagonalization' of \mathcal{X} by eigenvectors \mathbf{u} , \mathbf{v} , and w produces core tensor:

$$\lambda_{\mathbf{u},\mathbf{v},\boldsymbol{w}} = \boldsymbol{\mathcal{X}} \times_1 \mathbf{u} \times_2 \mathbf{v} \times_3 \boldsymbol{w}, \tag{5}$$

 $\lambda_{\mathbf{u},\mathbf{v},\boldsymbol{w}}$ is a coefficient from the core tensor $\boldsymbol{\lambda}$. Combining Eq. (4) & (5) yields:

$$\lambda_{\mathbf{u},\mathbf{v},\boldsymbol{w}} = \frac{1}{N} \sum_{n \in \mathcal{I}_N} \uparrow \otimes_3 \boldsymbol{\phi}_n \times_1 \mathbf{u} \times_2 \mathbf{v} \times_3 \boldsymbol{w}$$
$$= \frac{1}{N} \sum_{n \in \mathcal{I}_N} \langle \boldsymbol{\phi}_n, \mathbf{u} \rangle \langle \boldsymbol{\phi}_n, \mathbf{v} \rangle \langle \boldsymbol{\phi}_n, \boldsymbol{w} \rangle .$$
(6)

- Let ϕ_n be 'optimally' projected into subspace spanned by \mathbf{u} , \mathbf{v} and w when $\psi'_n = \langle \phi_n, \mathbf{u} \rangle \langle \phi_n, \mathbf{v} \rangle \langle \phi_n, w \rangle$ is **maximized**.
- As our **u**, **v**, and **w** are orthogonal w.r.t. each other and $||\phi_n||_2 = 1$, simple Lagrange equation $\mathcal{L} = \prod_{i=1}^r e_i^T \phi_n + \lambda(||\phi_n||_2^2 1)$ yields maximum of $\kappa = (1/\sqrt{r})^r$ at $\phi_n = [(1/\sqrt{r}), ..., (1/\sqrt{r})]^T$.
- For each $n \in \mathcal{I}_N$, we store $\psi_n = \psi'_n / \kappa$ in a so-called event vector ψ .

HoT with EPN (cont.)

Assume $\psi \in \{0,1\}^N$ stores N outcomes of drawing from Bernoulli distribution under the i.i.d. assumption: the probability p of an event $(\psi_n = 1) \& 1 - p$ for $(\psi_n = 0)$ are estimated by an expected value, $p = \operatorname{avg}_n \psi_n = \lambda_{\mathbf{u},\mathbf{v},\boldsymbol{w}}/\kappa \ (0 \le \psi \le 1)$. The probability of at least one positive event $(\psi_n = 1)$ projecting into the subspace spanned by r-tuples in N trials is:

$$\hat{\lambda}_{\mathbf{u},\mathbf{v},\boldsymbol{w}} = 1 - (1-p)^N = 1 - \left(1 - \frac{\lambda_{\mathbf{u},\mathbf{v},\boldsymbol{w}}}{\kappa}\right)^N.$$
(7)

Each of $\binom{d}{r}$ subspaces spanned by *r*-tuples acts as a detector of projections into this subspace. Eq. (7) is the spectral MaxExp pooling with κ normalization. Considering the dot-product between EPN-norm. tensors $\mathcal{G}(\mathcal{X})$ and $\mathcal{G}(\mathcal{Y})$:

$$\begin{array}{l} \langle \mathcal{G}(\mathcal{X}), \mathcal{G}(\mathcal{Y}) \rangle \\ = & \sum_{\substack{\mathbf{u} \in \mathbf{U}(\mathcal{X}) \\ \mathbf{v} \in \mathbf{V}(\mathcal{X}) \\ w \in W(\mathcal{X}) \\ w' \in W(\mathcal{Y}) \\ w' \in W(\mathcal{Y}) \\ w' \in W(\mathcal{Y}) \\ \end{array}} \sum_{\substack{\mathbf{u}' \in \mathbf{U}(\mathcal{Y}) \\ \mathbf{v}' \in \mathbf{V}(\mathcal{Y}) \\ w' \in W(\mathcal{Y}) \\ \end{array}} \langle \mathbf{u}, \mathbf{u}' \rangle \left\langle \mathbf{v}, \mathbf{v}' \right\rangle \left\langle w, w' \right\rangle.$$

$$(8)$$

Hence, all subspaces of \mathcal{X} and \mathcal{Y} spanned by *r*-tuples (*e.g.*, r = 3 as above) are compared against each other for alignment by the cosine distance.

Wang et al

6/9

Backpropagating through HOSVD and/or SVD

Let $M^{\#} = MM^{T} = U\lambda U^{T}$ be an SPD matrix with simple eigenvalues, *i.e.*, $\lambda_{ii} \neq \lambda_{jj}, \forall i \neq j$. Then U coincides also with the eigenvector matrix of tensor \mathcal{X} for the given unfolding. To compute the derivative of U (we drop the index) w.r.t. M (and thus \mathcal{X}), one has to follow the chain rule:

$$\frac{\partial \mathbf{U}}{\partial M_{kl}} = \sum_{i,j} \frac{\partial \mathbf{U}}{\partial (\boldsymbol{M} \boldsymbol{M}^T)_{ij}} \cdot \frac{\partial (\boldsymbol{M} \boldsymbol{M}^T)_{ij}}{\partial M_{kl}},$$
where
$$\frac{\partial u_{ij}}{\partial \boldsymbol{M}^{\#}} = u_{ij} (\lambda_{jj} \mathbb{I} - \boldsymbol{M}^{\#})^{\dagger}.$$
(9)

For SVD, we simply have to backpropagate through the chain rule:

$$\frac{\partial \mathbf{U} \mathbf{\lambda} \mathbf{U}^{T}}{\partial X_{m'n'}} = 2 \operatorname{Sym} \left(\frac{\partial \mathbf{U}}{\partial X_{m'n'}} \mathbf{\lambda} \mathbf{U}^{T} \right) + \mathbf{U} \frac{\partial \mathbf{\lambda}}{\partial X_{m'n'}} \mathbf{U}^{T},$$

where $\operatorname{Sym}(\mathbf{X}) = \frac{1}{2} (\mathbf{X} + \mathbf{X}^{T}).$ (10)

Let $\mathbf{X} = \mathbf{U} \boldsymbol{\lambda} \mathbf{U}^T$ be an SPD matrix with simple eigenvalues, *i.e.*, $\lambda_{ii} \neq \lambda_{jj}$, $\forall i \neq j$, and \mathbf{U} contain eigenvectors of matrix \mathbf{X} , then one can apply $\frac{\partial \lambda_{ii}}{\partial X} = \mathbf{u}_i \mathbf{u}_i^T$ and $\frac{\partial u_{ij}}{\partial X} = u_{ij} (\lambda_{jj} \mathbb{I} - X)^{\dagger}$.

Application to Action Recognition

Figure 4: Our action recognition pipeline with the attention mechanism.

Our pipeline:

- extract subsequences (invariance to action localization)
- apply various sampling rates (invariance to action speed)
- extract 400D features (I3D pretrained on Kinetics-400)
- obtain intermediate matrices with feature vectors
- use count sketching (sk) to reduce dimensionality & concatenate features

Attention mechanism:

- \bullet The attention network $w: \mathbb{R}^{d'} \! \rightarrow \! \mathbb{R}$ outputs an attention score
- $\Phi_w^{(i,j)} = w\left(\mathbb{E}\left(\Phi^{(i,j)}\right)\right) \cdot \Phi^{(i,j)}, i \in \{st_1, st_2, ...\} \& j \in \{sr_1, sr_2, ..., \}$
- form final feature matrix $\Phi_{(final)} \in \mathbb{R}^{d \times N}$, d = 4d', then passed via Eq. (4).
- pass ${\cal X}$ via EPN to obtain ${\cal G}({\cal X})\!\in\!\mathbb{R}^{d imes d imes d}$, one per instance to classify

8/9

Results & Discussions

SO+	sp1	sp2	2 sp3		ean	TO+		sp1	sp2	sp3	mean		
(no EPN)	76.2	75.3	76.7 7		6.1	.1 (no E			75.4	74.0	75.0	74.8	
HDP	81.4	78.8	80.1	80.1 80.1		HDP			81.8	79.6	81.3	80.9	
MaxExp	81.7	79.1	80.1	l 80.3		MaxExp			82.3	79.9	81.2	81.1	
MaxExp+IDT	86.1	85.2	85.8	8 85.7		MaxE	xp+II	DT	87.4	86.7	87.5	87.2	
ADL+I3D 81.5 Full-FT I3D 81.3 SCK(SO+) +IDT 85.1 SCK(TO+) +IDT 86.1													
Table 1: (top) Our model vs. (bottom) SOTA on HMDB-51.													
				static		dynamic			mean		nean		
			sta					(ea	stat/o	lyn	all		
SO+MaxExp			92.	92.52		82.03		44	87.3		88.0		
SO+MaxExp+IDT			94.	94.92		86.63		96.02		8	92.5		
TO+MaxExp+IDT			95.	95.36		86.90		97.04		1	93.1		
T-ResNet			92.	92.41		81.50		89.00		87.0			
ADL I3D			95.	95.10		88.30		-		91.7			
Table 2: (top) Our pipeline vs. (bottom) SOTA on YUP++.													
	sp		01 1	sp2	sp3	sp	4	sp5	sp6	sp7	mAF	>	
SO+Max	Exp+ID	T 75	5.7 8	2.5	79.4	75	.1 75.7		76.8	75.9	77.3	1	
TO+Max	Exp+IC	DT 78	78.6 8		81.5	78	.8 8	81.7	79.2	79.6 8		L	
KRP-F	KRP-FS 70.0 KRP-FS+IDT 76.1 GRP 68.4 GRP+IDT 75.5										<u>,</u>		
Table 3: (top) Our pipeline vs. (bottom) SOTA on MPII.													
Thank youl													
	I HAHK YOU!												

2