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Below we provide the prerequisites on power normaliza-
tion methods of high dimensional tensors.

A. Notations

X ∈ Rd1×d2...×dr denotes r-order tensor. By default
r = 3 meaning that X is a third-order tensor with excep-
tions depending on the context. The i-th slice of this tensor
is denoted as X :,:,i, which is a d1 × d2 matrix. For a ma-
trix X ∈ Rd1×d2 and a vector x = (x1, ..., xd3

) ∈ Rd3 ,
X = X ↑⊗x gives a tensor X ∈ Rd1×d2×d3 , where the
i-th slice of X is given by X · xi. A symmetric third-
order tensor of rank one X ∈ Rd×d×d can be obtained
from x as X = ↑⊗3x ≜ (xxT ) ↑⊗x. X = ↑⊗rx means
the r-order outer product of x, where the (i1, ..., ir)-th co-
efficient of X is given by Xi1,...,ir = xi1 · xi2 ... · xir .
The Frobenius norm of a tensor X is given by ∥X∥F =√∑

i,j,k X 2
ijk, where Xijk represents the ijk-th element of

X . Similarly, the inner-product between two tensors X
and Y is given by ⟨X ,Y⟩ =

∑
ijk XijkYijk. The ten-

sor product ×j in mode j between X ∈ Rd1×d2...×dr and
Y ∈ Rd′

1×d′
2...×d′

r∗ , where dj = d′j , is denoted as X ×j

Y ∈ Rd1...×dj−1×dj+1...×dr×d′
1...×d′

j−1×d′
j+1...×d′

r∗ . The
(i1, ..., ij−1, ij+1, ..., ir, i

′
1, ..., i

′
j−1, i

′
j+1, ..., i

′
r∗)-th coeffi-

cient of X ×j Y is given by
∑

ij
Xi1,...,ij ,...,ir ·

Yi′1,...,ij ,...,i
′
r∗

. We denote the spaces of d×d Symmetric Pos-
itive Semi-Definite (SPSD) and Symmetric Positive Defi-
nite (SPD) matrices as Sd

+ and Sd
++, Ir is an index sequence

1, 2, ..., r, I is the identity matrix, † is a Moore–Penrose in-
verse, {ei : i ∈ Id} are the spanning bases of Rd. Bold
lowercase/uppercase letters denote vectors/matrices, bold
uppercase mathcal letters denote tensors, and regular letters
denote scalars.

B. Eigenvalue Power Normalization

The following proposition formalizes the notion of
higher-order descriptors.

*This paper has been accepted for IEEE ICASSP 2024.

Proposition 1 ([3]). Let Φ ≡ {ϕ1, ...,ϕN ∈ Rd} and
Φ∗≡ {ϕ∗

1, ...,ϕ
∗
M ∈ Rd} be feature vectors extracted from

two instances to classify, e.g., video sequences, images, text
documents, etc. Let w ∈ RN

+ , w∗ ∈ RM
+ be some non-

negative weights and µ,µ∗ ∈Rd be the mean vectors of Φ
and Φ∗, respectively. A linearization of the sum of polyno-
mial kernels of degree r

⟨X (Φ;w,µ), X (Φ∗;w∗,µ∗)⟩

=
1

NM

N∑
n=1

M∑
m=1

wr
nw

∗r
m ⟨ϕn−µ,ϕ∗

m−µ∗⟩r,

(1)
yields the tensor feature map

X (Φ;w,µ) =
1

N

N∑
n=1

wr
n ↑⊗r (ϕn−µ) ∈ Rd×d...×d. (2)

Φ and Φ∗ do not have to be zero-mean centered (µ =
µ∗ = 0) if one uses an auto-correlation matrix/tensor in-
stead of covariance. The weights w and w∗ can differ for
each feature vector, e.g., they may be the same within each
group of feature vectors (image patch, video subsequence)
but differ across different groups (patches of different sizes
or subsequences of different lengths).

The EPN [4] performs a spectrum transformation on a
given higher-order descriptor X ∈ Rd1×d2...×dr , as de-
tailed in the following steps

(λ;U1, ...,Ur) = HOSVD(X ), (3)

λ̂ = g (λ), (4)

G(X ) = ((λ̂×1U1) ...)×rUr, (5)

where HOSVD stands for Higher Order Singular Value De-
composition [7, 2], the small-case g acts on the so-called
core tensor λ ∈ Rd′

1×d′
2...×d′

r in an element-wise man-
ner, where d′i ≤ di,∀i, and λ̂ ∈ Rd′

1×d′
2...×d′

r is the
power-normalized counterpart of λ. Moreover, {Ui ∈
Rdi×d′

i}i∈Ir
are r singular vector matrices. The uppercase

mathcal notation indicates that G is a spectrum-wise (c.f .
element-wise) operator on X . As the input tensor X is
super-symmetric by Eq. (2), i.e., we have X i1,i2,...,ir =

1
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(a) MaxExp & SigmE
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(b) Gamma & AsinhE
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(c) HDP

λ

g
(λ

)
≥

g
∗ (
λ
)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

MaxExp, η=3
HDP, t=0.15
Grassman, q(λ>0.2)

(d) Grassmann
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(e) Upper bounds
Figure 1: Different EPN functions and their profiles. Note the similarity of MaxExp (η>1) from Fig. 1a, Gamma (γ ∈ (0, 1))
from Fig. 1b and HDP (t ∈ (0, 1)) from Fig. 1c to each other. Also, the circle in Fig. 1d highlights the region where the profile
of HDP differs from MaxExp. Furthermore, note that the above EPN functions are soft approximations of the Grassmann
map (the step function) in Fig. 1d. Finally, Fig. 1e shows that MaxExp and Gamma given by g(λ) and g•(λ) are upper
bounds of HDP given by g∗(λ) (see details in [5]).

XΠ(i1,i2,...,ir) for any indexes (i1, i2, ..., ir) and any per-
mutation Π, thus we have U1=U2...=Ur.

Popular variants of EPN pooling [6, 5] shown in Fig. 1,
are given below, two for SPD/SPSD matrices and two for
indefinite matrices (Krein spaces):
Gamma g(λ; γ)=λγ (e.g., λ

1
2 ), in matrix form, G(X; γ)=

Xγ (e.g., X
1
2 a.k.a. matrix square root).

MaxExp g(λ; η)=1− (1− λ)η , in matrix form, G(X; η)=
I−(I−X)η .

AsinhE g(λ; γ′)=Arcsinh(γ′λ) and G(X; γ′)=Log
(
γ′X+

(I+γ′2X2)
1
2

)
. AsinhE is the Arcus Hyperbolic Sine

function.

SigmE g(λ; η′) = 2/(1+e−η′λ)−1 and G(X; η′) = 2
(
I+

Exp(−η′X)
)†
−I. SigmE stands for a zero-centered

Logistic a.k.a. Sigmoid function.

As shown in Figures 1a and 1b, SigmE/AsinhE extend
Gamma/MaxExp to Krein spaces by reflecting function
Gamma/MaxExp defined for non-negative eigenvalues λ by
the vertical symmetry axis followed by the change of sign.
Parameters 0< γ ≤ 1, η ≥ 1, 0< γ′≤ 1 and η′≥ 1 control
effect/steepness of such non-linearities. Moreover, eigen-
values λ are typically normalized by

∑
i |λi| and therefore

∀i, −1 ≤ λi ≤ 1. Figures 1c and 1d show the impact of PN
by varying γ of Gamma. Figure 1d shows that Gamma per-
forms whitening/evening out the spectrum of X ∈ Rd×d.

The EPN induces a family of non-Euclidean distance
∥G(X ) − G(Y)∥F in the SPSD/SPD cone. The Power-
Euclidean (PowE) metric 1

γ ||Xγ − Yγ ||2 is discussed by
[1] who point out that as γ→0, the Power-Euclidean metric
converges to the Log-Euclidean (LogE) metric ||Log(X)−
Log(Y)||F . Matrix Square Root (MSR) based distance is
in fact close to the Cholesky-Euclidean (CholE) distance
||Chol(X) − Chol(Y)||F suggested by [1]. However, the
best results for Power-Euclidean distance (whose under-
lying feature map is Gamma) are typically attained with

0 ≪ γ ̸= 0.5 [8, 6], which means the above connections
to the Log-Euclidean metric and ‘robust covariance esti-
mation’ are somewhat loose. Gamma for element-wise
matrix pooling (c.f . spectral/eigenvalue pooling) is con-
nected [6] to an operator called MaxExp. Intuitively, Max-
Exp yields ‘the probability of at least one co-occurrence
event (ϕn ∩ϕ′

n = 1) occurring in ϕn and ϕ′
n simultane-

ously, given N ≈ η Bernoulli trials and two event vectors
ϕ,ϕ′ ∈ {0, 1}N . In fact, element-wise MaxExp/Gamma
have similar profiles as Fig. 1 shows. As EPN whitens
the eigenspectrum of signal, it also differs from the batch
normalization of variance of gradient features.
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