
3Mformer: Multi-order Multi-mode Transformer for Skeletal Action Recognition Lei.Wang@data61.csiro.au^{1,2} Piotr.Koniusz@data61.csiro.au^{2,1} ¹Australian National University ²Data61/CSIRO

Motivation

Existing GCN-based action recognition models:

• represent human body joints based on physical connectivity • limited receptive fields & one-/few-hop neighbourhood aggregation • ignore dependency between body joints non-connected by body parts Human actions are associated with interaction groups of skeletal joints:

- the impact of groups of joints on each action differs
- the degree of influence of each joint should be learned
- design a better model for skeleton data (topology of skeleton graph)

Inspired by our tensor representations¹:

- *sequence compatibility kernel* (SCK) & *dynamics compatibility kernel* (DCK)
- incorporate multi-modal inputs & compactly capture complex interplay
- operate on subsequences / capture local-global interplay of correlations

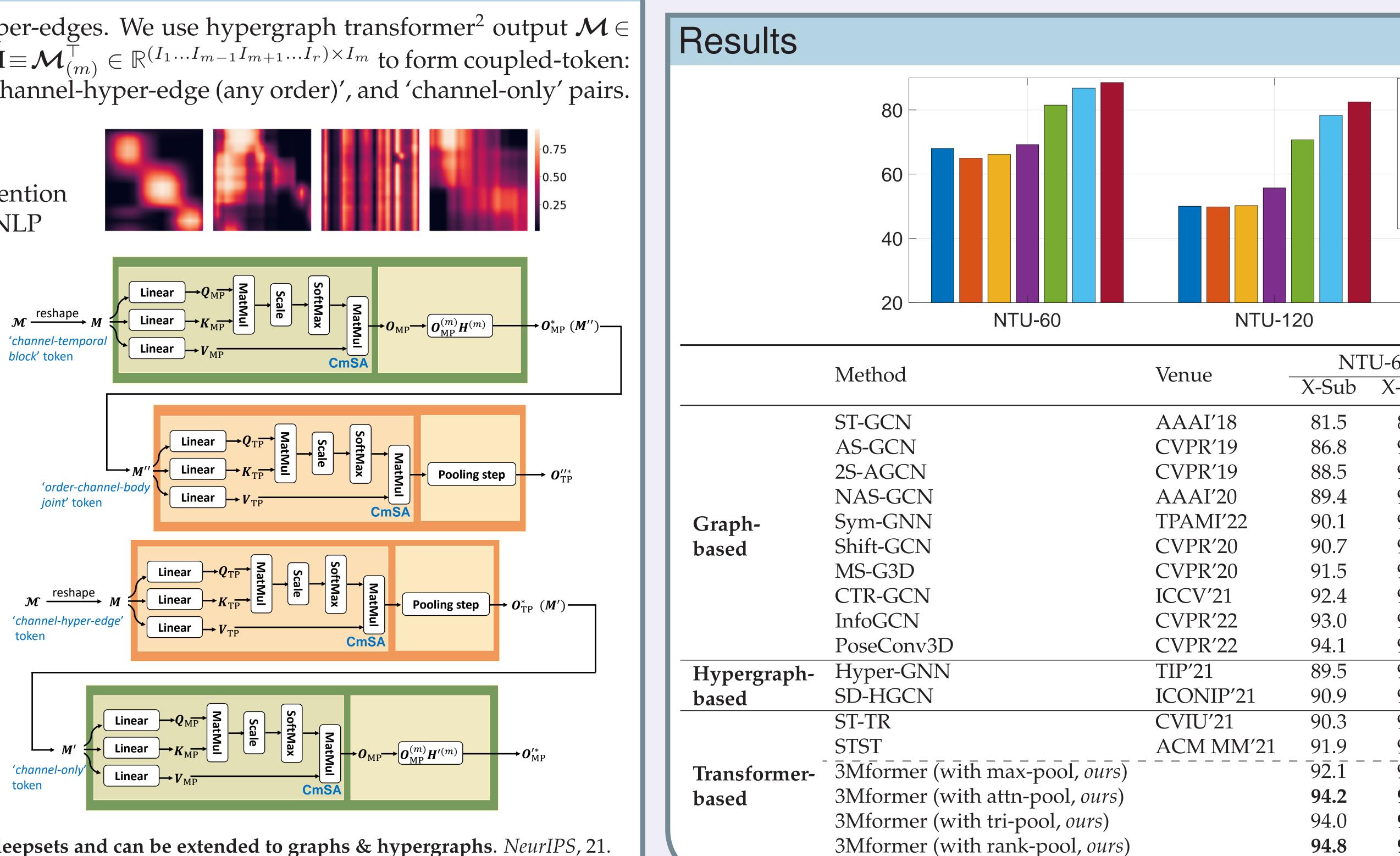
¹Koniusz, P., Wang, L., Cherian, A. (2021). **Tensor representations for action recognition**. *IEEE TPAMI*, 44(2), 648-665.

Key ideas

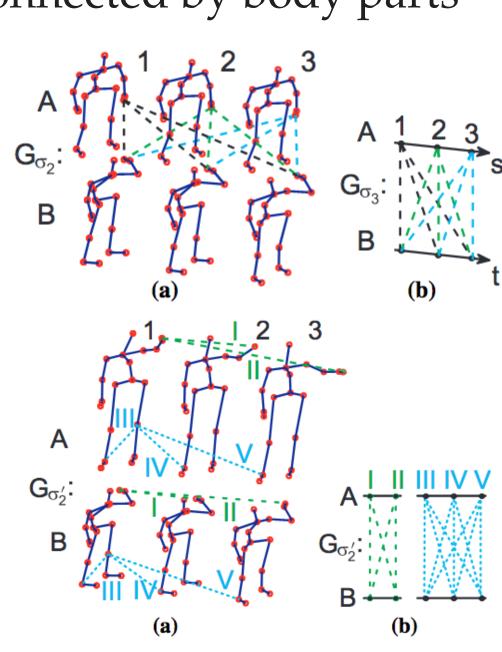
We use hypergraph higher-order relations of hyper-edges. We use hypergraph transformer² output $\mathcal{M} \in$ $\mathbb{R}^{I_1 \times I_2 \times \ldots \times I_r}$, and apply mode-*m* matricization $\mathbf{M} \equiv \mathcal{M}_{(m)}^{\top} \in \mathbb{R}^{(I_1 \ldots I_{m-1} I_{m+1} \ldots I_r) \times I_m}$ to form coupled-token: 'channel-temporal block', 'channel-body joint', 'channel-hyper-edge (any order)', and 'channel-only' pairs.

Coupled-mode Self-Attention (CmSA):

- shows diagonal & vertical patterns
- patterns are consistent with the patterns of attention matrices found in standard Transformer, e.g., NLP

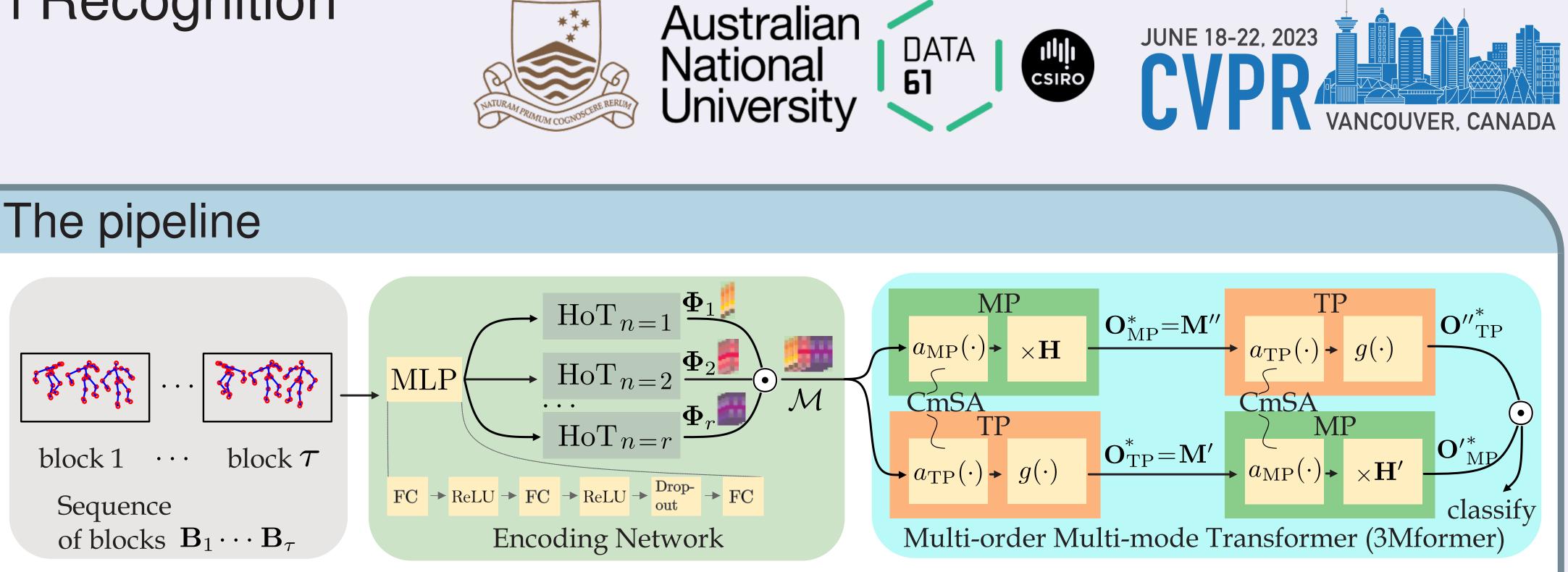

We propose a Multi-order Multi-mode Trans**former (3Mformer)**, which uses coupled-mode tokens to jointly learn various higher-order motion dynamics.

We have building modules:


- Multi-order Pooling (MP):
 - combine information flow **block-wise**
 - **coupled-mode** tokens help improve results
 - different focus of each attention mechanism
- Temporal block Pooling (TP):
 - each sequence may contain a different number of blocks
 - aggregation via popular pooling: rank-, first-, second- or higher-order pooling

We form **multi-head** CmSA.

block' token



² Jinwoo Kim *et al.*, A. (2021). Transformers generalize deepsets and can be extended to graphs & hypergraphs. *NeurIPS*, 21.

• Each sequence is split into τ temporal blocks $\mathbf{B}_1, ..., \mathbf{B}_{\tau}$ • Each block is embedded by a simple MLP into $X_1, ..., X_{\tau}$

• $X_1, ..., X_{\tau}$ are passed to HoTs (n=1, ..., r) for feature tensors $\Phi_1, ..., \Phi_{\tau}$ • Subsequently concatenated by \odot along the hyper-edge mode into tensor **M** ● **3Mformer contains two complementary branches**: MP→TP & TP→MP • Outputs are concatenated by \odot and passed to the classifier • MP & TP perform attention with the so-called **coupled-mode tokens** • MP contains weighted pooling along hyper-edge mode by learnable matrix H (& H' in another branch). TP contains **block-temporal pooling** denoted by $g(\cdot)$ to capture block-temporal order with pooling

 hyper-edge-only body joint-only temporal block-only channel-only channel-hyper-edge order-channel-body joint channel-temporal block 				
Kin	etics-Skele	ton		
60	NTU-120		Kinetics	-Skeleton
-View	X-Sub	X-Set	Top-1	Top-5
88.3	70.7	73.2	30.7	52.8
94.2	78.3	79.8	34.8	56.5
95.1	82.5	84.2	36.1	58.7
95.7	_	_	37.1	60.1
96.4	_	_	37.2	58.1
96.5	85.9	87.6	_	_
96.2	86.9	88.4	38.0	60.9
96.8	88.9	90.6	_	_
97.1	89.8	91.2	_	_
97.1	86.9	90.3	47.7	_
95.7	_	_	37.1	60.0
96.7	87.0	88.2	37.4	60.5
96.3	85.1	87.1	38.0	60.5
96.8	_	_	38.3	61.2
97.8	 -			
98.5	89.7	92.4	45.7	67.6
98.5	91.2	92.7	47.7	71.9
98.7	92.0	93.8	48.3	72.3
98.5 98.5	91.2	92.7	47.7	71.9