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Abstract—3D skeleton-based human action recognition has
emerged as a powerful alternative to traditional RGB and depth-
based approaches, offering robustness to environmental varia-
tions, computational efficiency, and enhanced privacy. Despite
remarkable progress, current research remains fragmented across
diverse input representations and lacks evaluation under scenarios
that reflect modern real-world challenges. This paper presents a
representation-centric survey of skeleton-based action recognition,
systematically categorizing state-of-the-art methods by their in-
put feature types: joint coordinates, bone vectors, motion flows,
and extended representations, and analyzing how these choices
influence spatial-temporal modeling strategies. Building on the
insights from this review, we introduce ANUBIS, a large-scale,
challenging skeleton action dataset designed to address critical
gaps in existing benchmarks. ANUBIS incorporates multi-view
recordings with back-view perspectives, complex multi-person
interactions, fine-grained and violent actions, and contemporary
social behaviors. We benchmark a diverse set of state-of-the-art
models on ANUBIS and conduct an in-depth analysis of how differ-
ent feature types affect recognition performance across 102 action
categories. Our results show strong action-feature dependencies,
highlight the limitations of naı̈ve multi-representational fusion,
and point toward the need for task-aware, semantically aligned
integration strategies. This work offers both a comprehensive
foundation and a practical benchmarking resource, aiming to
guide the next generation of robust, generalizable skeleton-based
action recognition systems for complex real-world scenarios. The
dataset website, benchmarking framework, and download link are
available at https://yliu1082.github.io/ANUBIS/.

Index Terms—Skeleton-based action recognition, Human activity
understanding, Feature fusion, Representation learning, Joint-
bone-motion features, Benchmark, ANUBIS, Multi-person inter-
action, Privacy-preserving vision, Spatio-temporal modeling.

I. INTRODUCTION

HUMAN action recognition from visual data represents
a fundamental challenge in computer vision, requiring

robust extraction and analysis of spatio-temporal patterns from
complex visual sequences [5], [6], [15], [16], [55], [91], [93],
[99], [104], [106]. The ability to automatically classify human
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Fig. 1: Multi-modality example of the action wave knife to
others from the ANUBIS dataset, captured uniquely from a
back-view perspective. Four consecutive frames are shown
across RGB (top), Depth (middle), and 3D Skeleton (bottom)
modalities. This example illustrates ANUBIS’s distinctive con-
tributions in introducing previously unseen interaction classes
and incorporating back-view acquisition, both absent in prior
skeleton-based action datasets (see Sec. III).

activities from video data has enabled critical applications across
intelligent surveillance systems [63], [94], autonomous vehi-
cle perception [36], robotic interaction [1], augmented reality
interfaces [4], clinical motion analysis [92], and behavioral
monitoring [59], [131]. To achieve robust action recognition,
researchers have explored diverse data modalities [6], [16], [91],
[93]. RGB videos provide rich visual cues such as appearance,
texture, and color, effectively capturing the overall dynamics of
human movement and contextual information.

However, RGB-based methods face significant limitations:
they suffer from performance degradation under challenging
environmental conditions, including poor lighting, background
clutter, and appearance variations, and as dense data, RGB
videos are computationally intensive, typically requiring larger
models and substantial computational resources for process-
ing [7], [92], [100], [109], [120]. These limitations collectively
restrict their reliability and feasibility in real-world deployments.
Depth maps offer complementary 3D structural information that
enables better geometric and spatial modeling, yet depth-based
methods remain sensitive to viewpoint changes, occlusions, and
sensor noise [26], [91], [93], [108]. Infrared data, while resilient
to lighting variations, presents challenges for infrared-based
methods, which often lack semantic richness and struggle to
capture fine-grained motion details [83]. Given the limitations
of these modalities, 3D human skeleton data, which represents
human poses using a sparse set of key anatomical joints, has
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emerged as a highly effective representation for human action
analysis [34], [66], [96]–[98], [102], [103].

Compared to other modalities, skeleton data offer several
advantages (see Fig. 1): significantly reduced storage require-
ments due to their sparse nature, computational efficiency during
processing, robustness to environmental variations, invariance to
appearance changes, and enhanced privacy protection by remov-
ing personally identifiable visual features [20], [21], [56], [92].
These qualities make skeleton data particularly well-suited for
deployment in challenging real-world scenarios, edge devices
with limited computational resources, and privacy-sensitive
applications [11], [59], [68], [105]. With recent advances in
depth sensing technologies and pose estimation algorithms
(e.g., RGB-D cameras, LiDAR sensors, and deep learning-based
pose estimators), acquiring high-quality skeleton sequences has
become increasingly accessible. These advantages have driven
significant advances in skeleton-based action recognition across
three key dimensions. Input representation has evolved beyond
joint coordinates to incorporate bone vectors, velocities, ac-
celerations, and surface normals for richer motion encoding.
Spatial modeling has been transformed by GCNs, with archi-
tectures like ST-GCN [118], 2s-AGCN [76], and DeGCN [58]
effectively capturing skeletal topology. Temporal modeling has
progressed from recurrent networks to advanced spatio-temporal
convolutions (e.g., MS-G3D [54]) and Transformers for long-
range dependencies [103]. Attention mechanisms [6], cross-
modal fusion [13], and neural architecture search have further
enhanced the performance [100].

Equally critical to this progress has been the availability of
large-scale datasets, particularly the NTU RGB+D series [51],
[73], which have served as foundational benchmarks for the
field. However, these datasets increasingly fall short of meeting
evolving research demands in several key aspects. First, the
majority of actions are captured from frontal viewpoints with
limited pose diversity, particularly lacking back-view perspec-
tives from multiple angles, which constrains model robustness
when deployment scenarios involve varied camera angles or
when subjects are oriented away from the primary sensor. Sec-
ond, existing datasets predominantly focus on individual daily
activities while neglecting complex multi-person interactions,
such as handshaking and collaborative behaviors, which are
prevalent in real-world environments. Third, they fail to incor-
porate challenging actions involving aggression and violence
(e.g., hitting someone’s head, stabbing with weapons), which
represent important categories for security and surveillance
applications but remain largely absent from current benchmarks.
Finally, they lack contemporary socially relevant behaviors
(e.g., pandemic-related gestures and social distancing protocols),
thereby limiting their ecological validity and applicability to
modern scenarios. These gaps collectively highlight the urgent
need for more comprehensive datasets that better reflect the
complexity and diversity of human actions in real-world.

In this work, we address key limitations in current skeleton-
based action recognition through three main contributions:

i. Representation-centric survey. We provide a systematic
taxonomy of skeleton-based action recognition methods,
organized by input representation (joints, bones, mo-
tion, extended features), and analyze how spatial-temporal
modeling strategies adapt to each representation type.

ii. ANUBIS benchmark dataset. We propose ANUBIS, a
large-scale benchmark of 102 diverse actions. ANUBIS
uniquely incorporates: (i) multiple viewpoints including
back-view recordings, (ii) complex multi-person interac-
tions, (iii) challenging violent and security-critical ac-
tions,filling critical gaps in existing datasets.

iii. Comprehensive benchmarking and analysis. We evalu-
ate a wide range of popular models on ANUBIS, showing
how representation choice and modeling strategy affect
performance, and uncovering cases where naı̈ve multi-
representational fusion degrades recognition.

These contributions collectively position ANUBIS as
a challenging new benchmark, deepen understanding of
representation-driven design, and provide a foundation for de-
veloping more generalizable and semantically aware skeleton-
based action recognition systems.

II. A REPRESENTATION-CENTRIC REVIEW

A. Joint-Based Methods

Joint coordinates are characterized by multi-node structures,
where the node count is typically determined by the skeletal
detection sensors used [91], [93]. Each node encodes the spatial
position of a human joint through either two-dimensional pixel
coordinates or three-dimensional world coordinates, forming the
geometric primitives of the skeletal graph structure.

1) Spatial Modeling: Effective human pose analysis requires
capturing both individual joint positions and their inherent
spatial relationships. While joint coordinates provide explicit
2D/3D locations, the underlying skeletal structure is defined
by connectivity and dependency patterns among joints. Spatial
modeling approaches for joint coordinates can be categorized
into two primary strategies: methods using predefined anatom-
ical connectivity and adaptive approaches that learn joint rela-
tionships from data.

Manually predefined joint connectivity. Predefined con-
nectivity methods embed fixed topological relationships among
joints directly into model architectures using binary adjacency
matrices that encode anatomical connections. Unlike prepro-
cessed bone methods that introduce 3D geometric vectors
as additional input features, predefined connectivity serves as
structural constraints within the architecture itself. This archi-
tectural approach offers computational efficiency since con-
nectivity patterns remain static throughout training and in-
ference, requiring negligible overhead. Early CNNs establish
structured feature representations by using fixed skeletal con-
nections within convolutional operations, where local receptive
fields extract spatially-constrained features according to anatom-
ical topology [18]. Contemporaneously, RNNs perform spa-
tial modeling through sequence conversion using two primary
strategies: sequential linearization transforms joint coordinates
into structured orderings (chain, traversal, or tree sequences)
that preserve local connectivity and spatial adjacency, while
hierarchical partitioning uses two-layer architectures to capture
both part-level details and whole-level structural integrity [19],
[52], [53], [74], [87], [91], [93], [125]. Advancing beyond these
sequential approaches, GNNs use predefined adjacency matrices
to constrain graph convolutions, enabling feature aggregation
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Fig. 2: Evolution of skeleton-based action recognition methods from 2014 to 2025. The taxonomy categorizes approaches into
four main groups: Joint Based (joint only), Join-Bone Enhanced (ioint+bone), Motion Enhanced (joint+bone+motion), and Derived
Skeleton Representation Methods. Each category showcases the progression from traditional RNN/LSTM methods to modern GCN
and Transformer architectures, demonstrating the evolution of deep learning techniques for skeleton-based action recognition.

only among directly connected joints while constructing tree-
like hierarchies based on parent-child relationships. These meth-
ods often convert absolute coordinates to local representations
relative to parent nodes, eliminating global translation effects
and incorporating geometric constraints to ensure physiological
plausibility [118], [128].

However, traditional graph structures with binary edge con-
nections prove insufficient for modeling complex multi-joint
coordination behaviors [92], [98]. Consequently, hypergraph
extensions address this limitation through hierarchical hyper-
edges, first-level edges maintain original skeletal connections
while higher-level edges aggregate multiple limb joints, en-
abling multi-branch parallel processing that extracts local mo-
tion features from low-order branches and coordination pat-
terns from high-order branches through unified matrix token
conversion [24], [71], [98], [107], [129]. While these prede-
fined approaches collectively reduce computational overhead by
avoiding preprocessed bone data, they require dataset-specific
redefinition for cross-domain applications, limiting their gener-
alizability [93], [100], [103].

Dynamic adaptive joint relationship learning. While man-
ually predefined skeletal connections offer computational sim-
plicity and efficiency, they are inherently limited to modeling
relationships between adjacent joints, thereby constraining their
capability for capturing complex non-adjacent dependencies
essential for sophisticated action recognition. To overcome
these limitations, adaptive learning approaches have emerged
where models automatically learn optimal connection patterns
during training, using this learned information to enhance spatial
feature representation beyond fixed topological constraints.

Adaptive relationship learning provides two primary advan-
tages: (i) Enhanced spatial modeling scope enables learning of
both local adjacent relationships and global non-adjacent depen-
dencies between arbitrary joint pairs, transcending physical con-

nectivity limitations. For instance, in clapping gestures, bilateral
hand coordination requires modeling cross-body relationships
that extend far beyond skeletal connections. (ii) Action-specific
feature emphasis enables models to dynamically weight joint
relationships based on their discriminative importance for spe-
cific actions. For example, in running motions, lower limb joints
carry substantially greater semantic significance than upper limb
joints, requiring adaptive emphasis on leg-related connections.

Dynamic adaptive joint relationship learning can be achieved
through three principal paradigms: attention-based adaptive
weighting [98], specialized convolutional architectures [34],
[96], [97], and learnable graph topology modification [13].

Attention-based adaptive weighting. Attention mechanisms
enable models to dynamically compute relationship strengths
between all joint pairs, effectively learning a fully-adaptive
adjacency structure [53], [79], [80], [114]. These mechanisms
have been extensively deployed in recurrent architectures in-
cluding RNNs and LSTMs. Spatial attention computes func-
tional association strengths between joint pairs based on their
feature representations during forward propagation, generating
data-driven connection weights that can span arbitrary spatial
distances. This mechanism endows models with fully-adaptive
topological modeling capabilities, autonomously discovering
and reinforcing critical joint interactions across different mo-
tions. Transformer-based architectures exemplify this paradigm
through sophisticated self-attention implementations [6], [17],
[24], [62], [67], [71], [98], [105], [129]. These models treat
skeletal structures as fully-connected graphs where every joint
can potentially influence every other joint. They use Query-
Key-Value mechanisms to calculate pairwise correlation scores,
dynamically determining which joint relationships are most rel-
evant for the current input. While physical skeletal connectivity
can be incorporated as positional bias or structural prior, the
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learned attention weights are free to deviate from anatomical
constraints, enabling discovery of semantic relationships (e.g.,
hand-foot coordination) that transcend physical adjacency.

Specialized convolutional architectures. CNN-based ap-
proaches use channel-wise convolution to achieve global joint
interaction modeling [41], [117]. This paradigm represents
skeletal sequences as tensors, then transposes them to a new
tensor format where each joint becomes a distinct input channel.
Subsequent 1× 1 convolution across the channels implement
learnable linear combinations of all joint features, effectively
enabling each spatial location to aggregate information from
all joints simultaneously. This channel-wise aggregation mech-
anism inherently captures global dependencies since each output
feature incorporates weighted contributions from all input joints,
regardless of their physical adjacency.

Learnable graph topology modification. GCN-based ap-
proaches use learnable parameters to modify connections within
graph structures. These methods typically operate on predefined
adjacency matrices that encode human skeletal topology, but
augment them with trainable components to enable adaptive
relationship learning. Two primary strategies exist within this
paradigm: (i) Adjacency matrix augmentation methods [27],
[111] learn additive or multiplicative modifications to fixed
adjacency matrices, enabling models to strengthen existing
connections or establish entirely new pathways between pre-
viously unconnected joints. (ii) Learnable mask matrices share
identical dimensionality with base adjacency matrices, where
each trainable element modulates the corresponding connec-
tion strength [126]. During training, these parameters adapt
to emphasize discriminative joint relationships while poten-
tially discovering cross-limb or non-adjacent dependencies that
complement the anatomical structure. Advanced variants [13],
[42] can learn sparse attention patterns that selectively activate
non-adjacent connections based on action-specific requirements,
effectively expanding the receptive field beyond immediate
neighborhoods while preserving beneficial structural priors.

2) Temporal Modeling: Skeleton-based action recognition
fundamentally relies on capturing continuous joint movement
patterns over time. Temporal modeling transforms static joint
coordinates into dynamic motion trajectories by analyzing action
boundaries, velocity variations, and sequential dependencies.
This temporal analysis serves two critical functions: aggregating
local motions across frames to form complete action semantics,
thereby resolving single-frame ambiguities; and enabling dis-
crimination between spatially similar actions (e.g., putting on
versus taking off clothing) through temporal pattern analysis
[102], [103], [105]. Temporal modeling faces inherent structural
differences compared to spatial approaches [65], [99], [104].

Spatial modeling uses stable joint topology within individual
frames, where joint relationships form consistent patterns that
can be reliably captured through single-frame analysis. In con-
trast, temporal modeling depends on inter-frame dynamics span-
ning multiple key frames, where action semantics emerge from
continuous motion sequences rather than instantaneous spatial
configurations. This temporal dependency introduces three chal-
lenges. First, sampling-related issues arise from the difficulty
of capturing complete action sequences [14]: (i) Sparse frame
sampling leads to incomplete action coverage, varying action
rhythms cause semantic dilution, and short-duration movements

are difficult to capture adequately. (ii) Fixed sampling strategies
further compound these problems, producing redundant frames
for rapid motions and insufficient coverage for slower actions
across different individuals and action types. Second, robustness
challenges emerge from noise and occlusion disturbances that
propagate through sequential processing, creating information
discontinuity, instability, and temporal imbalance that signifi-
cantly constrain recognition performance [105]. Third, compu-
tational challenges include long-range dependency attenuation,
where local convolution operations dilute correlations between
distant frames, and increased computational complexity from
large receptive field requirements for complete action coverage.

Current approaches address these challenges through decom-
posed short-term and long-term modeling strategies for micro-
actions and periodic sequences, respectively [37]. Effective solu-
tions require preserving cross-frame joint correlations for spatio-
temporal coherence, implementing adaptive time scales for
motion variation accommodation, and emphasizing key frames
for stable state learning. However, despite these advances, fun-
damental limitations persist in long-range dependency modeling
and computational efficiency, necessitating continued method-
ological development in temporal modeling approaches. Based
on the network structure, we categorize skeleton-based temporal
methods into RNNs and spatio-temporal CNNs.

RNNs. RNNs process skeleton sequences through sequential
frame input, fusing current observations with memory states
encoding historical information. Standard RNNs [114] [19]
exhibit gradient vanishing/explosion problems that limit long-
range temporal modeling capability, making LSTMs [52] [74]
[87] [125] [80] [53] [78] the preferred choice for skeleton-based
recognition systems. LSTM enhancements target two primary
objectives: hierarchical modeling and global context integra-
tion. Hierarchical approaches partition human joints into body
parts, with part-specific LSTMs capturing local dynamics before
higher-level LSTMs model inter-part temporal relationships [37]
[74] [87]. Global context methods introduce temporal attention
mechanisms that dynamically weight time steps and integrate
historical features through context vectors, enhancing long-
range dependency capture [80] [53]. These improvements signif-
icantly enhance both dependency modeling and interpretability.

Spatio-temporal CNNs. Temporal convolution applies one-
dimensional kernels along the time axis to aggregate adjacent
frame features, using dilated convolution to expand receptive
fields for long-range dependency capture [31] [82]. However,
pure temporal convolution ignores spatial joint structure and
requires deep networks or large dilation rates for adequate re-
ceptive fields, increasing computational costs. Consequently, re-
search has shifted toward integrated spatio-temporal convolution
that jointly models spatial correlations and temporal dynamics
[111] [118] [126] [27] [42]. Subsequent improvements focus
on computational efficiency and representation enhancement.
Residual connections optimize gradient propagation in temporal
layers, while temporal attention mechanisms guide focus toward
critical action periods [114] [110] [27]. Multi-scale temporal
aggregation through dilated convolution captures dependencies
at varying time scales, integrating short-term and long-term
segments for complex action sequence modeling.

Neural architecture search (NAS) provides automated opti-
mization for spatio-temporal convolution design [64]. By defin-
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ing search spaces encompassing temporal kernel sizes, dilation
rates, and connectivity patterns, evolutionary algorithms and
reinforcement learning automatically discover efficient architec-
tures, avoiding manual design biases and achieving hierarchical
temporal modeling optimization. Non-Euclidean temporal fea-
ture embedding offers alternative modeling perspectives [10],
[54], [96], [97], [102], [103], [111]. Hyperbolic space mapping
uses exponential distance growth properties to enhance long-
range temporal dependency discrimination. This approach em-
beds temporal dynamics into curved spaces through logarithmic
and exponential transformations, mitigating distant feature con-
fusion in Euclidean spaces, particularly beneficial for actions
requiring subtle temporal distinction.

B. Joint-Bone Enhanced Methods
Joint-bone enhanced methods explicitly generate bone vectors

through coordinate differences between joints during prepro-
cessing, creating independent input features that encode limb
length, direction, and anatomical connectivity [75], [76].

Spatial modeling with bone explicitly incorporates anatomical
structural information as additional input features alongside
joint coordinates. This approach computes bone vectors during
preprocessing and feeds them as independent data streams that
provide explicit relationships between joints. Bone vectors are
typically calculated as directional vectors between anatomi-
cally connected joints [68], [105]. Existing joint-bone enhanced
methods can be categorized into two paradigms: dual-stream
architecture and information fusion architecture.

Dual-stream architecture uses independent two-stream net-
works to process joint and bone representations separately,
with integration occurring at the decision level through
weighted combination of prediction scores [12], [17], [32], [39],
[41], [54], [62], [64], [67], [76], [112], [117], [121], [129],
[130], [132]. Representative methods include 2s-AGCN [76],
MSG3D [54], and Dynamic GCN [121] While this approach
ensures feature-specific feature learning without cross-modal in-
terference, it incurs significant computational overhead requiring
multiple times the parameters and computation costs compared
to single-stream methods, and the late fusion strategy may not
capture intricate inter-modal dependencies, potentially leading
to suboptimal utilization of complementary information between
joint coordinates and bone structural features.

Feature fusion architecture integrates bone as auxiliary
contextual features within a unified framework, where bone
data enhances joint representations through early or intermediate
fusion mechanisms [13], [62], [71], [75], [100], [127]. CA-
GCN [127] incorporates bone information through context-
aware mechanisms that compute attention weights to determine
bone feature relevance to each joint. This context term en-
riches the primary joint stream by providing structural infor-
mation inherent in skeleton. Unlike dual-stream approaches, this
paradigm maintains a single network architecture processing the
primary joint stream while incorporating bone as supplementary
context, resulting in significantly lower parameter count and
computational requirements. However, unified processing may
lead to feature interference where different feature characteris-
tics could result in suboptimal joint representations [95], [100],
[101], and the single network may not fully exploit unique
properties of each feature that dedicated streams could capture.

The spatial modeling approaches for joint-bone representa-
tions fundamentally differs from joint-only methods, including
manually predefined joint connectivity and dynamic adaptive
joint relationship learning, which construct bone relationships
implicitly within the network. Explicit bone preprocessing offers
distinct advantages over joint-only approaches: pre-computed
bone vectors directly encode physical connections between adja-
cent and non-adjacent joints, using anatomical prior knowledge
for immediate access to limb relationships and biomechanical
constraints. This design concentrates computational costs in the
preprocessing stage while requiring only multi-stream feature
fusion during inference, contrasting with joint-only methods
that must predefine or learn these relationships within the
network. Each method presents characteristic trade-offs. Joint-
bone enhanced methods provide computational efficiency and
anatomical consistency but are limited to predefined structural
relationships. Among joint-only approaches, manually prede-
fined connectivity offers simplicity but restricts modeling to
adjacent joints, while dynamic adaptive learning enables flexible
capture of non-adjacent joint relationships, a key advantage
for complex action modeling, but requires large-scale training
data and incurs higher computational costs. The choice depends
on application requirements: joint-bone enhanced methods suit
scenarios requiring anatomical consistency and efficiency, while
dynamic adaptive approaches excel when flexible non-adjacent
joint modeling is crucial for complex actions.

C. Motion Enhanced Methods

Motion represents dynamic changes extracted from tempo-
ral variations between adjacent frames, capturing kinematic
dependencies and dynamic spatial information essential for
distinguishing actions that remain ambiguous through spatial
analysis alone. This representation encompasses two fundamen-
tal categories of kinematic information characterizing skeletal
sequence temporal evolution, joint motion information and bone
motion information. Joint motion information captures dynamic
changes of individual joints across temporal dimensions, typi-
cally represented as coordinate differences between consecutive
frames. For each joint at a given time frame, its motion feature
is defined as the change in position from the previous frame,
effectively capturing the joint’s velocity [105]. In addition, bone
motion captures the dynamic changes in the relationships be-
tween connected joints over time [66]. Specifically, it represents
how the relative positions of connected joints evolve from one
frame to the next. This bone motion is particularly important for
modeling actions that involve complex structural changes, such
as limb extensions or coordinated movements across multiple
limbs, as it emphasizes the dynamics of skeletal connectivity
rather than just individual joint displacement [10], [75].

Recent research adopts two primary architectures for motion
integration. Multi-stream architectures process joint, bone, and
motion features through separate network branches, subse-
quently integrated via concatenation or weighted fusion strate-
gies [8], [10], [12], [38], [49], [58], [67], [75], [77], [110],
[115], [116], [121], [124], [129]. Motion streams typically use
more refined temporal modeling to capture dynamic charac-
teristics compared to joint and bone streams. Unified network
approaches directly combine motion features with joint and
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bone features by concatenating along channel dimensions within
single architectures [43], [71], [81], [124], [126], [127]. Both
architectures benefit from two motion modeling strategies. At-
tention mechanisms focus on informative motion components
[12], [38], [49], [58], [71], [110], [115], [116], [124], [126],
with spatial attention highlighting active joint nodes, temporal
attention locating keyframes within action sequences, and cross-
modal attention coordinating complementary relationships be-
tween different representations. Multi-scale temporal modeling
processes motion signals across different temporal resolutions
[8], [12], [38], [115], [116], [124], [130], using parallel convolu-
tion branches with small kernels for fine-grained high-frequency
motions and large kernels for long-period actions, preserving
dynamic features at multiple temporal resolutions.

D. Derived Skeleton Representation Methods

Researchers explore derived skeleton representations with
enhanced expressiveness through mathematical transformations,
physical model derivations, or visual processing techniques.

Surface normal approaches represent the geometry of body
parts by capturing the relative shapes formed by adjacent edges.
For each pair of connected edges, a surface normal vector
describes the orientation of the corresponding body surface. To
maintain consistency with the scale of joint coordinates, these
vectors are appropriately scaled. For a skeleton with multiple
joints, each joint defines a corresponding surface, resulting in
a tensor of dimensions corresponding to the number of frames,
the number of joints, and the three components of the normal
vector [88]. Surface normals capture shape information during
movements, including planar angle changes formed by body
parts, thereby enhancing multi-joint spatial interaction repre-
sentation and limb posture complexity modeling. In temporal
modeling, surface normal variations effectively represent planar
configuration evolution in limb movements, complementing
joint and edge features in the temporal dimension. Bidirectional
LSTM processing enhances time-dependent action relationship
learning. However, surface normal computation faces two limi-
tations. First, edge vector calculation errors from noise or occlu-
sion propagate to surface normal vectors, introducing erroneous
geometric dynamics in temporal modeling. Second, retaining
only planes may lose potential geometric correlations between
non-adjacent joints in time series, affecting complete expression
of subtle temporal action features.

Lie group-based methods represent human skeletons using
two main frameworks. SE(3)-based approaches model skeletons
as a set of rigid body transformations, capturing both rotation
and translation to comprehensively describe spatial pose rela-
tionships [85]. In contrast, SO(3)-based approaches focus on the
relative rotational relationships between body parts, using only
rotation matrices and applying scale normalization to retain 3D
rotational information. This allows for a skeletal representation
that is invariant to scale while emphasizing rotational dynam-
ics [86]. Both SE(3)- and SO(3)-based approaches model action
sequences as curves on Lie group manifolds and handle tem-
poral variations using Dynamic Time Warping (DTW). SE(3)-
based methods project action curves onto the corresponding Lie
algebra, extract multi-scale temporal features through a Fourier
Time Pyramid, and perform classification using a linear SVM.

This framework captures dynamic patterns at different temporal
resolutions, effectively addressing variations in action speed.
SO(3)-based methods, on the other hand, introduce rolling
mapping mechanisms that unfold the Lie group manifold along
nominal action curves. This reduces distortion during mapping
while preserving distance relationships, enabling more accurate
modeling of rotational dynamics in skeletal motion.

Lie group representations provide geometrically meaningful
skeleton modeling through structured manifold point sets. SE(3)
methods preserve complete spatial pose information including
both rotation and translation, while SO(3) methods achieve
computational efficiency and cross-individual generalization
through dimensionality reduction via rotational focus. However,
these approaches face several limitations. SE(3) representations
incur higher computational complexity due to increased feature
dimensionality from rotation and translation components. SO(3)
methods may sacrifice spatial translation information that could
be relevant for certain action categories. Both approaches exhibit
decreased discriminative ability when handling extreme postures
or complex action couplings due to nonlinear Lie group man-
ifold characteristics. Additionally, rolling mapping algorithms,
while reducing manifold distortion, introduce implementation
complexity that may limit practical deployment [91], [93].

Joint heatmap methods convert 2D skeleton coordinates
into probabilistic spatial representations using Gaussian distribu-
tions. Each joint is represented as a heatmap that reflects both its
spatial location and confidence, with the spread of the Gaussian
controlling the uncertainty around the joint position. By stacking
these heatmaps over time, a 3D volume is formed, capturing
both spatial and temporal information of the skeleton. This
volume has dimensions corresponding to the number of joints,
the temporal length, and the spatial resolution, providing a
rich representation for downstream tasks [22]. The probabilistic
heatmap representation enables robust pose estimation under
noise conditions while maintaining computational efficiency
through direct multi-joint accumulation. The 3D volume struc-
ture facilitates direct 3D-CNN processing for spatiotemporal
feature extraction. Spatial modeling uses adapted 3D-CNN
architectures that remove early-stage downsampling operations
to preserve low-resolution heatmap features. Shallow network
designs reduce computational complexity while maintaining
spatial dependency capture capabilities. Preprocessing involves
minimum bounding box localization and cropping to focus on
action subjects while preserving spatial relationships. Multi-
channel input combining joint and limb heatmaps enhances
skeletal structure representation through collaborative modeling.
Temporal modeling uses 3D convolution kernels to simultane-
ously extract spatial joint relationships and temporal position
changes across adjacent time steps. This unified spatiotemporal
processing captures dynamic joint evolution patterns essential
for action recognition. Heatmap-based representations provide
natural noise robustness through probabilistic encoding and
efficient 3D-CNN compatibility. The approach enables direct
spatial relationship modeling without explicit graph construction
while maintaining computational tractability. However, limita-
tions include spatial resolution constraints that may lose fine-
grained positional information, increased memory requirements
for 3D volume storage, and potential temporal redundancy in
slowly-varying actions. Additionally, the Gaussian assumption
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(a) Venue layout. (b) Camera arrangement.

Fig. 3: ANUBIS dataset collection setup overview.

may not optimally represent all joint confidence distributions,
particularly for occluded or uncertain joint detections. Below,
we present our dataset along with a comparative analysis.

III. ANUBIS: A NEW BENCHMARK DATASET

Motivation. The collection of ANUBIS dataset addresses
three fundamental limitations in existing datasets that constrain
practical deployment effectiveness. First, established datasets
including NTU60 [73] and NTU120 [51] capture predominantly
frontal and lateral viewpoints while systematically excluding
rear-view perspectives across multiple angles, limiting model
robustness when processing actions from challenging observa-
tion positions that commonly occur in real-world monitoring
scenarios. Second, these benchmarks focus primarily on individ-
ual behaviors while underrepresenting multi-person interactions
such as collaborative activities and assistance behaviors that
are prevalent in practical applications. Third, existing datasets
exhibit constrained action scope, omitting aggressive behaviors
critical for security and surveillance deployment, such as stab-
bing and striking actions, alongside pandemic-induced social
adaptations including elbow touching and arm-directed sneezing
that emerged following COVID-19. These gaps make existing
datasets much less useful in real-world applications, as models
trained on such data cannot recognize actions from challenging
camera angles, multi-person interactions, and new types of
behaviors that are essential for practical systems. Thus, our new
dataset overcomes these critical limitations, advancing the field
toward practical real-world applicability.

A. Dataset Collection

ANUBIS comprises 102 carefully selected actions including
both individual behaviors (e.g., drinking water, waving) and
multi-person interactions (e.g., handshaking, object exchange,
stabbing). The 102 actions are distributed across 40 collection
sessions, with each session involving two participants as a
group and lasting approximately 1.5 hours. Every 10 sessions
incorporates 10-minute breaks to maintain performance quality,
and sessions exhibiting substandard action execution are re-
recorded to ensure data integrity. The dataset comprises 40
participant groups totaling 80 participants and approximately
60 hours of multi-modal recordings (see Fig. 1).

Multi-view camera setups. The acquisition system uses
five Microsoft Azure Kinect devices arranged in symmetric
horizontal configuration at 0◦, ±30◦, and ±45◦ angles within a
standardized 556cm×274cm indoor environment, as illustrated
in Fig. 3. While cameras maintain horizontal symmetry, each

Fig. 4: Distribution of 102 human actions classified into four cat-
egories. The pie chart shows: independent actions (45, 44.1%),
aggressive actions (40, 39.2%), social interactive actions (15,
14.7%), and other actions (2, 2.0%). Other actions specifically
refer to spatial position change behaviors, including walk apart
and walk from apart to together.

device operates at different heights and poses to enhance view-
point diversity. Camera heights and poses are randomly adjusted
every 10 groups to capture more diverse viewpoints.

Participants move freely within marked activity areas and
perform each action four times per session to create different
viewpoints: facing the cameras, facing away from cameras,
switching positions while facing cameras, and switching po-
sitions while facing away. This collection protocol results in 20
different camera views for each participant pair performing the
same action, ensuring comprehensive coverage from multiple
angles, especially challenging rear views that are often missing
in existing datasets. For interactive actions, participants also
switch their active and passive roles when changing positions to
capture both sides of the interaction. To ensure realistic perfor-
mances while maintaining safety, we use appropriate items for
different action types: toy weapons for simulated violence, wigs
for hair-pulling actions, tissues for mouth-covering gestures, and
soft objects like paper boxes for hitting actions to prevent injury.

Data prerocessing. We developed custom software to man-
age data collection across all five synchronized Azure Kinect
cameras. The software records the exact start and end time
of each action, ensuring all cameras capture the same actions
simultaneously. During data processing, we use these recorded
timestamps to extract individual action clips from the complete
recordings of each group. Each clip contains three types of data:
RGB, depth, and 3D skeleton videos, as shown in Fig. 1. For
actions that are naturally short, we extend them to the standard
300-frame length by repeating the action frames.

Dataset statistics. ANUBIS comprises 102 action categories
collected from 80 participants, generating 66,232 skeleton clips
across 80 viewpoints, as presented in Tab.I. The viewpoint distri-
bution includes 40 frontal views and 40 rear views from different
angles, ensuring balanced coverage between frontal perspec-
tives and challenging posterior orientations. Based on action
categories, the dataset contains 45 independent actions (single-
person behaviors) and 57 multi-person interactions. Among
multi-person actions, we include 17 social interaction behaviors
(e.g., handshaking, patting shoulders, object exchange), and
40 aggressive actions (e.g., hitting, stabbing, strangling). The
complete statistics of ANUBIS are shown in Fig.4.
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TABLE I: Comprehensive Overview of Skeleton-based Action Recognition Datasets

Dataset Classes Views Subjects Clips Sensors Additional Modalities Dataset Type

HDM05 (2007) [57] 130 1 5 2,337 - RGB Human motion capture
MSRAction3D (2010) [45] 20 1 10 567 Kinect RGB, Depth Daily activities
CAD-60 (2011) [84] 12 - 4 68 Kinect RGB, Depth Human performing activities
MSRDailyActivity3D (2012) [89] 16 1 10 320 Kinect RGB, Depth Daily activities
G3D-Gaming (2012) [3] 20 1 10 - Kinect RGB, Depth Gaming gestures
UTKinect (2012) [113] 10 - 10 200 Kinect RGB, Depth Human actions
SBU (2012) [123] 8 - 7 282 Kinect RGB Human-human interaction
CAD-120 (2013) [35] 10 - 4 120 Kinect RGB, Depth Activity types & object interactions
Berkeley MHAD (2013) [60] 11 4 12 660 Kinect RGB, Depth, Audio, Accelerometer Multimodal Capture & Controllable & Synced Data
Florence3D-Action (2013) [72] 9 - 10 215 Kinect RGB, Depth Daily Activities
MSRActionPairs3D (2013) [61] 12 - 10 360 Kinect RGB, Depth 3D Action & Gesture Recognition
UCFKinect (2013) [23] 16 - 16 1,280 - RGB, Depth General actions
Northwestern-UCLA (2014) [90] 10 3 10 1,494 Kinect RGB, Depth Daily Activities
Multi-View TJU (2014) [46] 20 2 22 7,040 - RGB, Depth Multi-view actions
UWA3D Multiview Activity (2014) [70] 30 4 10 701 Kinect RGB, Depth Multi-view actions
SYSU 3D HOI (2015) [25] 12 - 40 480 Kinect RGB, Depth Human-object interaction
UWA3D Multiview Activity II (2015) [69] 30 4 10 1,070 Kinect RGB, Depth Daily activities
NTU-60 (2016) [73] 60 80 40 56,880 Kinect v2 RGB, Depth, Infrared Large-scale general actions
PKU-MMD I (2017) [47] 51 3 66 1,076 Kinect v2 RGB, Depth, Infrared Multi-modal actions
Kinetics-skeleton (2018) [119] 400 - - 260,232 - - Based on publicly available RGB videos
RGB-D Varying-View (2018) [30] 40 9 118 25,600 Kinect v2 RGB, Depth Multi-view actions
NTU-120 (2019) [51] 120 155 106 114,480 Kinect v2 RGB, Depth, Infrared Large-scale general actions
MMAct (2019) [33] 37 5 20 36,764 - RGB, Accelerometer, Gyroscope Multi-modal actions
PKU-MMD II (2020) [50] 41 3 13 1,009 Kinect v2 RGB, Depth, Infrared Multi-modal actions
ETRI-Activity3D (2020) [29] 55 - 100 112,620 Kinect v2 RGB Daily activities of the elderly
IKEA ASM (2020) [2] 33 3 48 16,764 Kinect v2 RGB, Depth Furniture assembly
UAV-Human (2021) [44] 155 - 119 22,476 Azure Kinect RGB, Infrared, Depth UAV perspective actions
NCRC (2022) [28] 6 - 8 398 - - Nursing care activities
Tai-Chi (2022) [122] 10 - - 200 Perception Neuron - Martial arts
ANUBIS (2025) 102 80 80 66,232 Azure Kinect RGB, Depth Large-Scale & Multi-Person & Frontal / Rear-View & In-the-Wild

B. Comparison with Existing Datasets

Table I presents a comparative summary of our dataset against
existing benchmarks.

Existing datasets exhibit diverse characteristics across de-
vices, modalities, and application scenarios. NTU-60 [73] es-
tablishes a multi-view 3D action analysis benchmark with 60
indoor action categories, while NTU-120 [51] extends the action
repertoire to 120 classes to enhance classification challenges.
Meanwhile, Kinetics-skeleton [119] extracts skeletal informa-
tion from large-scale RGB videos to provide structured rep-
resentations. For multimodal fusion, PKU-MMD I [47] inte-
grates RGB, depth, and infrared data to support continuous
action modeling, whereas PKU-MMD II [50] builds upon this
multimodal foundation by adding fine-grained annotations for
interaction actions. Additionally, MMAct [33] combines visual
and inertial sensor data to accommodate mobile scenarios,
and RGB-D Varying-View [30] specifically explores viewpoint
robustness through dynamic perspective changes. In vertical
applications, ETRI-Activity 3D [29] focuses on elderly daily
activity monitoring, while IKEA ASM [2] targets fine-grained
manipulation tasks such as furniture assembly. Furthermore,
NCRC-Human [28] concentrates on nursing scenario action
analysis, and Tai-Chi [122] provides in-depth characterization
of Tai Chi movement kinematics. Moreover, UAV-Human [44]
enriches spatial observation dimensions through drone perspec-
tives, and several datasets use devices like Azure Kinect DK to
improve acquisition precision. These datasets collectively serve
different research objectives including general algorithm valida-
tion, scenario-specific optimization, and cross-modal learning,
forming a diversified data ecosystem for research.

ANUBIS offers distinct advantages over existing datasets in
three key aspects. First, in terms of technical specifications,
we use Microsoft Azure Kinect devices, providing superior
skeleton extraction accuracy and stability compared to Kinect
V1/V2 systems used in most previous benchmarks. The dataset
captures 32 joint coordinates per skeleton, adding 7 additional
joints compared to the 25 joints in NTU datasets: 5 facial
joints (nose, eyes, and ears) and 2 clavicle joints, enabling more

detailed representation of facial expressions and upper body
posture. Second, regarding content scope and diversity, ANUBIS
addresses critical gaps in existing benchmarks by expanding
action categories. While NTU-60 (60 categories, 40 participants,
56,880 sequences) and NTU-120 (120 categories, 106 partici-
pants, 114,480 sequences) established foundational benchmarks
emphasizing scale expansion, ANUBIS (102 categories, 80 par-
ticipants, 66,232 clips) introduces qualitative advances through
three previously underrepresented action types: complex multi-
person interactions for collaborative behavior analysis, aggres-
sive behaviors essential for security and surveillance applica-
tions, and contemporary pandemic-induced social adaptations
reflecting evolving interaction patterns. Most importantly, the
most distinctive innovation lies in comprehensive viewpoint
coverage through systematic rear-view data collection across
multiple angles. This creates novel technical challenges where
hand details and frontal movements become occluded, better
approximating real-world monitoring conditions where subjects
may not always face cameras directly. This balanced frontal-
posterior perspective distribution addresses critical observational
limitations in traditional datasets while enhancing model robust-
ness under diverse camera orientations essential for practical
deployment scenarios.

IV. EVALUATION AND BENCHMARKING

A. Experimental Setups

We benchmarked a range of state-of-the-art skeleton-based
action recognition methods on our newly collected ANUBIS
dataset and evaluated these methods on the NTU datasets for
comparative analysis. All experiments were implemented in
PyTorch and trained on a single NVIDIA RTX 3090 GPU for
50 epochs. Stochastic Gradient Descent (SGD) with momentum
0.9 was used as the optimizer, with an initial learning rate of
0.05, decayed to 10% at epoch 30.

Skeleton data was preprocessed via normalization and trans-
lation [103]. All video clips were standardized to 300 frames
using action repetition (except SkateFormer [17], which retained
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TABLE II: Performance of representative skeletal action recognition methods on NTU60, NTU120, and the proposed ANUBIS.
While NTU60 and NTU120 results are approaching saturation, ANUBIS presents a substantially more challenging and unsolved
benchmark, leaving significant room for performance improvement. The best and second-best performances are highlighted.

Method Venue Features
Dataset Params

(M) GFLOPs
NTU60 NTU120 ANUBIS

X-Sub X-View X-Sub X-Set Top-1 Top-5

STGCN [118] AAAI 2018 Joint 81.5 88.3 - - 50.25 79.96 3.4 45.23
Motif-STGCN [111] AAAI 2019 Joint 84.2 90.2 - - 55.76 83.96 1.78 27.10

2s-AGCN [76] CVPR 2019 Joint+Bone 88.5 95.1 - - 57.26 84.86 3.47 47.84
MS-G3D [54] CVPR 2020 Joint+Bone 91.5 96.2 86.9 88.4 54.17 82.05 3.8 62.72
GCN-NAS [64] AAAI 2020 Joint+Bone 89.4 95.7 - - 56.40 84.37 6.57 93.64
HD-GCN [40] ICCV 2023 Joint+Bone 93.4 97.2 90.1 91.6 51.33 80.96 8.8 12.74

RA-GCN [81] ICIP 2019 Joint+Motion 85.9 93.5 - - 41.87 73.45 10.26 135.52

Shift-GCN [10] ICIP 2019 Joint+Bone+Motion 90.7 96.5 85.9 87.6 26.84 57.50 0.73 6.16
Decoupling-GCN [9] ECCV 2020 Joint+Bone+Motion 90.8 96.6 86.5 88.1 52.32 80.06 3.63 32.98
CTR-GCN [8] ICCV 2021 Joint+Bone+Motion 92.4 96.8 88.9 90.4 37.90 70.40 10.07 141.68
STTFormer [67] arxiv 2022 Joint+Bone+Motion 92.3 96.5 88.3 89.2 57.77 85.30 6.6 109.08
Hyperformer [129] arxiv 2022 Joint+Bone+Motion 92.9 96.5 89.9 91.3 47.51 77.77 3.1 32.68
InfoGCN [12] CVPR 2022 Joint+Bone+Motion 93.0 97.1 89.4 90.7 46.99 76.69 1.6 19.97
BlockGCN [130] CVPR 2024 Joint+Bone+Motion 93.1 97.0 90.3 91.5 54.46 81.73 2.5 36.79
Skateformer [17] ECCV 2024 Joint+Bone+Motion 93.5 97.8 89.8 91.4 45.02 75.43 3.8 8.93
DS-STGCN [115] TIP 2024 Joint+Bone+Motion 93.2 97.5 89.4 91.2 52.43 81.96 1.4 14.09
DeGCN [58] TIP 2024 Joint+Bone+Motion 93.6 97.4 91.0 92.1 60.16 85.63 1.4 9.75
ProtoGCN [48] CVPR 2025 Joint+Bone+Motion 93.5 97.5 90.4 91.9 47.56 78.10 4.2 29.88
LA-GCN [116] TMM 2025 Joint+Bone+Motion 93.5 97.2 90.7 91.8 60.33 86.87 3.4 28.32

its original 64-frame window). Evaluation metrics included Top-
1 and Top-5 classification accuracy, as well as model complexity
indicators. To show the recognition accuracies of a model for
all the action classes, a confusion matrix is used [91], [93].

B. Benchmark Comparison: NTU vs. ANUBIS

Table II presents our benchmark comparison, followed by a
detailed analysis of each aspect.

Performance saturation on NTU. Results on NTU60 and
NTU120 show a clear trend toward performance saturation.
Many recent methods, including DeGCN, LA-GCN, and Pro-
toGCN, exceed 93% Top-1 accuracy on NTU60 cross-subject
and over 97% on cross-view splits. On NTU120, these methods
regularly surpass 90%, leaving minimal headroom for further
improvement. This plateau suggests that NTU datasets, while
historically instrumental, no longer fully differentiate the ca-
pabilities of state-of-the-art skeleton-based recognition models.
Consequently, incremental gains on NTU may not reflect real-
world robustness or generalization ability.

ANUBIS as a more challenging benchmark. In con-
trast, ANUBIS results are substantially lower, even for top-
performing models. LA-GCN achieves the highest Top-1 ac-
curacy at 60.33%, closely followed by DeGCN at 60.16%,
with Top-5 accuracies just above 85%. Most other methods fall
in the 40-55% range, despite reaching near-perfect scores on
NTU. This performance drop highlights the increased difficulty
of ANUBIS, driven by factors such as rear-view occlusions,
fine-grained actions, and modern social interaction patterns.
The dataset’s complexity disrupts conventional represenration
exploitation patterns, indicating that current architectures, op-

timized for standard benchmarks, struggle to adapt to more
realistic and diverse action scenarios.

Representation-type trends and variability. Interestingly,
ANUBIS does not show a straightforward correlation between
the number of input feature types and performance. Joint-only
(J) methods like Motif-STGCN reach 55.76%, surpassing some
tri-representation (Joint + Bone + Motion) methods such as
CTR-GCN (37.90%) and Shift-GCN (26.84%). Even within tri-
representation designs, variance is high: LA-GCN and DeGCN
lead with 60%+ Top-1, while several others hover below 50%.
This suggests that the quality of feature fusion strategies and
architectural adaptability outweighs simply increasing feature
types. On ANUBIS, fusion design, attention mechanisms, and
temporal-spatial reasoning appear more critical than the raw
presence of multiple features.

Computational efficiency considerations. From a resource
perspective, there is no consistent trade-off between accuracy
and efficiency. Some lightweight models, such as DeGCN (1.4M
parameters, 9.75 GFLOPs), achieve top-tier performance, while
others with far greater complexity, such as CTR-GCN (10.07M
parameters, 141.68 GFLOPs), perform significantly worse on
ANUBIS. This efficiency-performance decoupling reinforces
that computational cost does not guarantee robustness on chal-
lenging datasets. It also underscores the potential for more
resource-friendly yet highly accurate architectures, particularly
for deployment in edge and real-time scenarios.

V. IN-DEPTH ANALYSIS AND DISCUSSION

A. Confusion Matrix Analysis and Dataset Challenges

Below, we present an in-depth analysis of confusion matrix
for ANUBIS using LA-GCN (best model), shown in Fig. 5.
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Fig. 5: Confusion matrix of LA-GCN on ANUBIS. Clear diagonal dominance reflects strong recognition for macro-motion and
dyadic actions, while off-diagonal confusions cluster among fine-grained, hand/object-centric classes (e.g., fold paper, play magic
cube), highlighting the limitations of skeleton-only features in capturing subtle manipulations and object context.

Overall performance. The confusion matrix for LA-GCN on
ANUBIS shows a highly non-uniform distribution of recognition
accuracy across action classes. Certain categories, particularly
those with distinctive, large-scale body movements such as
clapping each other, walk apart, and walk from apart to to-
gether, form bright diagonal clusters, indicating high recognition
accuracy with minimal confusion. These actions provide strong
spatio-temporal signals and distinctive inter-joint relationships,
which LA-GCN can model effectively. In contrast, many fine-
grained or localized actions display heavy off-diagonal activ-
ity, reflecting substantial misclassification. The imbalance be-

tween well-separated macro-movements and ambiguous micro-
movements underscores the diverse difficulty spectrum.

Sources of misclassification. High confusion rates are partic-
ularly evident among actions with similar skeletal motion trajec-
tories but differing in object interactions or subtle hand gestures,
for example, fold paper vs. cutting paper, make victory sign vs.
thumb up, or apply cream on face vs. wash face. Since ANUBIS
is purely skeleton-based, critical cues such as object presence,
fine finger articulation, or texture changes are absent, forcing
the model to infer action semantics from incomplete spatial-
temporal data. Additionally, rear-view sequences exacerbate this
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challenge, as many hand and torso movements become partially
occluded, reducing the discriminability of similar gestures.

Viewpoint and interaction complexity. A notable difficulty
arises from ANUBIS’s inclusion of rear-view and multi-person
interactive scenarios. In rear-view cases, key discriminative
joints (hands, face orientation) are less visible or entirely
occluded, leading to higher confusion even for otherwise distinct
actions. Meanwhile, interactive actions sometimes benefit from
additional relational cues (e.g., body proximity, coordinated
movements), improving recognition compared to isolated fine-
motor actions. However, when multiple participants perform
overlapping motions, inter-person occlusions and role ambiguity
can also increase error rates, as seen in confusions between
certain cooperative and antagonistic interactions.

Why ANUBIS is a valuable benchmark? This confusion
matrix shows why ANUBIS is substantially more challenging
than traditional benchmarks like NTU. It combines viewpoint
variation, fine-grained gestures, modern social behaviors, and
complex multi-person interactions, all of which stress-test a
model’s spatial reasoning, temporal modeling, and robustness to
incomplete information. For future researchers, ANUBIS offers
a fertile ground to explore: (i) Multi-modal fusion: integrating
RGB, depth, or object-context streams to resolve semantic ambi-
guities. (ii) Fine-grained local feature learning: improving finger
joint precision, using high-resolution pose estimations, and
applying attention mechanisms to hand regions. (iii) Viewpoint-
invariant representations: developing architectures resilient to
occlusions and perspective shifts. (iv) Relational reasoning: en-
hancing modeling of inter-person dynamics for both cooperative
and competitive interactions.

Implications for model design. The persistent confusions
highlighted here suggest that future algorithms must go beyond
current GCN and Transformer hybrids, which excel in macro-
motion capture but falter in local detail extraction. Promising
directions include hierarchical feature learning, where models
capture both global body structure and localized joint dynamics;
self-supervised pretraining to enrich motion semantics without
additional labels; and scene- or object-aware skeleton augmen-
tation to inject missing contextual signals. By tackling the chal-
lenges exposed by ANUBIS, researchers can develop models
with stronger generalization, adaptability to real-world occlu-
sions, and robustness to nuanced human behaviors, capabilities
essential for next-generation action understanding systems.

B. Action-Level Performance Trends on ANUBIS

Below we provide a focused, multi-angle discussion of the
per-class results (Table III) for the six best models on ANUBIS.

What easy vs. hard classes reveal? Across models, the top-
20 classes average 84.6% accuracy, while the bottom-20 average
only 27.5%. High-accuracy actions (e.g., clapping each other 96-
98%, walk apart 96-97% for most models, bow up to 95.1%)
share clear, whole-body motion signatures and/or large spatial
displacements that produce distinctive spatio-temporal patterns.
In contrast, the hardest classes are dominated by fine-motor,
hand-centric, or human-object interactions (e.g., fold paper,
ball up paper, play magic cube, open bottle), where skeletal
streams alone underspecify the semantics (no object context;
limited finger fidelity). This split aligns with the broader finding

that skeleton-only pipelines excel at macro body dynamics but
underperform on micro-manipulation.

Cross-model agreement as a stability signal. The Range
column (max-min accuracy across models) is a useful consensus
proxy. It’s smaller for easy classes (mean range ∼ 0.105 in the
top-20) and larger for hard classes (mean range ∼ 0.169 in the
bottom-20), indicating that difficult categories induce greater ar-
chitectural sensitivity. Stable/easy classes include clapping each
other (range 0.058), knock over (0.056), rock-paper-scissors
(0.050), walk from apart to together (0.047), and nod head
(0.044). By contrast, high-variance categories, put object into
bag (0.320), open bottle (0.271), flick hair (0.254), play magic
cube (0.218), show strong model-specific behavior, suggesting
that fusion design and local feature modeling, rather than
modality count, drive the differences.

Model-level profiles and robustness. Averaged over the
top-20, LA-GCN leads (87.9%), followed by STTFormer
(86.9%), Motif-STGCN (84.3%), ST-GCN (84.0%), 2s-AGCN
(83.3%), and DeGCN (81.2%). On the bottom-20, LA-GCN
again ranks first (32.1%), then STTFormer (29.1%), DeGCN
(27.7%), Motif-STGCN (26.8%), 2s-AGCN (25.6%), and ST-
GCN (23.9%). Notably, DeGCN has the smallest accuracy drop
from top-20 to bottom-20 (∼ 53.5 pp vs. 55-60 pp for others),
indicating relatively better resilience on difficult, fine-grained
classes, even though its absolute accuracy remains lower on the
easy set. This pattern hints that DeGCN’s part/decoupling bias
helps when global motion cues are weak.

Who wins where (per-class wins)? Counting ties as shared
wins: in the top-20, LA-GCN leads with 8 wins (e.g., walk from
apart to together, rock-paper-scissors, clapping and hushing),
STTFormer follows with 6 (e.g., bow, knock over, squat down),
and Motif-STGCN contributes 4 (e.g., walk apart, falling down,
touch elbows, whisper). In the bottom-20, LA-GCN again leads
(9 wins), while DeGCN notably secures 5 wins (e.g., open
bottle, make victory sign, ball up paper, fold paper), reinforc-
ing its relative strength on hand/object-centric actions. These
distributions suggest LA-GCN offers the best overall balance,
while DeGCN is disproportionately helpful on the tail where
local articulation dominates.

Action taxonomy: dyadic vs. single-subject fine motor.
Many top classes are dyadic or coordinated (clapping each
other, exchange object, shake hands, pushing, follow person,
whisper). The presence of a partner supplies relative pose and
motion cues that are easier to encode in graphs/transformers,
boosting separability. Conversely, bottom classes are mostly
single-subject, object-centric, or subtle gestures (fold paper, ball
up paper, play magic cube, make ok sign, yawn). Here, object
state and finger articulation, both weakly represented in standard
skeletons, are decisive. The outcome strongly argues for object-
aware and hand-aware augmentations (e.g., explicit hand-pose
subgraphs; contact tokens; object proxy nodes inferred from
motion; or lightweight RGB/IR cues fused selectively).

Where each architecture fails and why? Architectural
biases surface in outliers. For instance, DeGCN underperforms
on walk apart (83.8%) relative to others (∼96-97%), suggesting
that some decoupled designs may under-leverage global dis-
placement and long-range cross-person cues. STTFormer shows
excellent performance on macro patterns (bow 95.1%) but can
collapse on very fine manipulation (fold paper 2.5%), hinting
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TABLE III: Per-class accuracy of six leading models on ANUBIS, showing the top-20 easiest and bottom-20 most challenging
actions. Easy classes are dominated by large-scale body motions and dyadic interactions, yielding high consensus across models,
while hard classes involve fine-grained, hand/object-centric gestures with high variance, showing architectural sensitivity and
representation limitations.

Rank Action Name LA-GCN STTFormer 2s-AGCN STGCN Motif-
STGCN

DeGCN Range

1 clapping each other 0.984 0.984 0.926 0.955 0.952 0.964 0.058
2 walk apart 0.958 0.971 0.964 0.961 0.974 0.838 0.136
3 bow 0.920 0.951 0.880 0.926 0.914 0.883 0.071
4 walk form apart to together 0.950 0.934 0.934 0.903 0.903 0.906 0.047
5 cheers and drink 0.935 0.945 0.792 0.831 0.798 0.769 0.176
6 rock-paper-scissors 0.935 0.899 0.885 0.905 0.908 0.885 0.050
7 nod head 0.912 0.898 0.877 0.921 0.918 0.886 0.044
8 arm circles 0.864 0.861 0.874 0.848 0.770 0.906 0.136
9 clapping and hushing 0.902 0.887 0.830 0.869 0.851 0.842 0.072
10 wave hand 0.888 0.885 0.831 0.799 0.814 0.793 0.089
11 knock over 0.867 0.883 0.877 0.852 0.827 0.855 0.056
12 exchange object 0.874 0.828 0.720 0.735 0.774 0.780 0.154
13 shake hands 0.865 0.815 0.871 0.818 0.789 0.733 0.138
14 pushing 0.870 0.818 0.815 0.809 0.762 0.738 0.132
15 arm swings 0.845 0.861 0.786 0.809 0.854 0.764 0.097
16 falling down 0.839 0.803 0.822 0.783 0.855 0.809 0.072
17 touch elbows 0.811 0.814 0.702 0.794 0.847 0.770 0.145
18 squat down 0.816 0.842 0.750 0.777 0.753 0.711 0.131
19 follow person 0.840 0.756 0.786 0.686 0.766 0.706 0.154
20 whisper 0.702 0.735 0.744 0.812 0.832 0.709 0.130

83 put object into bag 0.456 0.330 0.136 0.311 0.204 0.311 0.320
84 flick hair 0.329 0.456 0.381 0.202 0.423 0.456 0.254
85 hit with object 0.366 0.423 0.423 0.390 0.441 0.390 0.075
86 pinch body (not arm) 0.380 0.347 0.343 0.432 0.340 0.271 0.161
87 drink water 0.432 0.384 0.345 0.384 0.321 0.348 0.111
88 pinch face with two hands 0.305 0.338 0.244 0.296 0.422 0.292 0.178
89 stab person 0.390 0.348 0.413 0.319 0.381 0.332 0.094
90 thumb up 0.407 0.283 0.360 0.350 0.259 0.253 0.154
91 chop (cut) person 0.401 0.401 0.212 0.293 0.323 0.371 0.189
92 open bottle 0.374 0.229 0.262 0.121 0.241 0.392 0.271
93 make ok sign 0.367 0.286 0.195 0.247 0.166 0.211 0.201
94 yawn 0.372 0.316 0.322 0.357 0.304 0.201 0.171
95 make victory sign 0.146 0.188 0.153 0.162 0.156 0.341 0.195
96 self-cutting with knife 0.332 0.302 0.317 0.215 0.323 0.278 0.117
97 cutting paper 0.204 0.331 0.175 0.178 0.194 0.226 0.156
98 play magic cube 0.324 0.228 0.147 0.106 0.135 0.128 0.218
99 wipe face 0.209 0.239 0.227 0.195 0.268 0.198 0.073

100 take object out of bag 0.256 0.233 0.188 0.117 0.210 0.146 0.139
101 ball up paper 0.233 0.140 0.137 0.078 0.214 0.242 0.164
102 fold paper 0.134 0.025 0.134 0.019 0.040 0.158 0.139

at insufficient high-precision local attention or challenges with
ambiguous rear-view hand cues. Motif-STGCN, despite being
older, excels on global, rhythmically coherent actions (walk
apart 97.4%, falling down 85.5%, whisper 83.2%), likely bene-
fiting from recurring motion motifs. These contrasts imply that
ensembling or hybridizing (e.g., LA-GCN backbone + DeGCN-
style local decoupling + motif priors) could yield gains.

Practical guidance and future directions. For general
deployment, LA-GCN is the most reliable head-and-tail per-
former. For hand/object-heavy applications, consider mixing a
DeGCN-like local articulation module or hand-focused sub-
graphs. Across the board, the bottom classes make a strong case
for: (i) Multi-modal enrichment: add lightweight object/context
cues (RGB patches, object heatmaps) or learned object nodes
linked to hands. (ii) Local attention: high-resolution, hand-
centric attention (hierarchical GCNs/Transformers, dilated tem-
poral windows) to capture micro-gestures. (iii) Interaction mod-

eling: explicit cross-person relational edges and contact events
for dyadic actions. (iv) Curriculum/augmentation: viewpoint-
hard negatives, hand-pose perturbations, and synthetic object-
interaction variations to reduce overfitting to macro motion.

Beyond Top-1/Top-5, track (i) per-class stability via Range,
(ii) hand/object subset scores (tail classes), and (iii) dyadic vs.
single-subject splits. Reporting these alongside overall accuracy
makes progress on ANUBIS more diagnostic and reduces the
risk of gains being driven by already-easy, macro-motion cate-
gories. ANUBIS is a valuable resource for future research.

C. Analysis of Feature Type Impact

Below, we analyze the impact of feature types on the top
three performing models on our ANUBIS benchmark.

Performance variation across actions. Fig. 6 presents the
per-class accuracy distribution for the top-performing models on
ANUBIS, offering a detailed view of how recognition perfor-
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TABLE IV: Actions with consistent accuracy gains across all three models (LA-GCN, STTFormer, DeGCN) when adding the
Bone feature type. Only 7 out of 102 classes show universal benefit, indicating that bone vectors selectively help actions where
limb geometry and joint relationships are key (e.g., arm-hand positioning).

Rank Action Name LA-GCN STTFormer DeGCN Avg. Improve
Joint Joint+Bone Improve Joint Joint+Bone Improve Joint Joint+Bone Improve

1 sneeze 0.5310 0.5693 +0.0383 0.3628 0.5192 +0.1564 0.4779 0.5310 +0.0531 +0.0826
2 thumb up 0.4074 0.4175 +0.0101 0.2828 0.4141 +0.1313 0.2525 0.3468 +0.0943 +0.0786
3 follow person 0.8395 0.8696 +0.0301 0.7559 0.8462 +0.0903 0.7057 0.7559 +0.0502 +0.0569
4 running 0.7883 0.7948 +0.0065 0.7362 0.8241 +0.0879 0.7557 0.8013 +0.0456 +0.0467
5 pull collar 0.4202 0.4448 +0.0246 0.3834 0.4141 +0.0307 0.3006 0.3804 +0.0798 +0.0450
6 self-cutting with knife 0.3323 0.3867 +0.0544 0.3021 0.3263 +0.0242 0.2779 0.2870 +0.0091 +0.0292
7 punch to face 0.4787 0.5488 +0.0701 0.4909 0.4939 +0.0030 0.3994 0.4116 +0.0122 +0.0284

TABLE V: Actions improved in at least two of three models when adding the Motion feature type. No action achieved consistent
gains across all models, underscoring the model-dependent and unstable nature of motion integration, beneficial for certain
temporally distinctive actions but harmful in others. Action abbreviations: “support old people walking” refers to “support with
arms for old people walking”.

Rank Action Name LA-GCN STTFormer DeGCN Avg. Improve
Joint Joint+Motion Improve Joint Joint+Motion Improve Joint Joint+Motion Improve

1 stand up 0.7964 0.7725 -0.0239 0.4820 0.6617 +0.1797 0.5719 0.7605 +0.1886 +0.1148
2 play magic cube 0.3237 0.2596 -0.0641 0.2276 0.3558 +0.1282 0.1282 0.3750 +0.2468 +0.1036
3 take off a hat 0.5761 0.7104 +0.1343 0.5493 0.5284 -0.0209 0.3851 0.4567 +0.0716 +0.0617
4 play a phone 0.4149 0.5403 +0.1254 0.4239 0.3403 -0.0836 0.2657 0.3791 +0.1134 +0.0517
5 cutting paper 0.2038 0.3726 +0.1688 0.3312 0.3121 -0.0191 0.2261 0.2261 +0.0000 +0.0499
6 running 0.7883 0.8241 +0.0358 0.7362 0.8143 +0.0781 0.7557 0.7362 -0.0195 +0.0315
7 support old people walking 0.7800 0.6967 -0.0833 0.6500 0.7067 +0.0567 0.5700 0.6700 +0.1000 +0.0245
8 squat down 0.8155 0.8452 +0.0297 0.8423 0.7887 -0.0536 0.7113 0.8065 +0.0952 +0.0238
9 jump up 0.7545 0.7455 -0.0090 0.6108 0.7156 +0.1048 0.7126 0.6826 -0.0300 +0.0219
10 pull collar 0.4202 0.3957 -0.0245 0.3834 0.4325 +0.0491 0.3006 0.3712 +0.0706 +0.0317

TABLE VI: Actions with consistent accuracy drops across all three models when adding either Bone or Motion features (worst-
affected feature type reported). All top declines are linked to Motion, with some drops exceeding 40%, highlighting the risk
of unfiltered motion cues overwhelming stable joint-based representations. Action abbreviations: “walk apart together” refers to
“walk form apart to together” and “throw object to person” refers to “pick and throw an object to person”.

Rank Action Name Feature LA-GCN STTFormer DeGCN Avg. Decline
Joint Added feature Decline Joint Added feature Decline Joint Added feature Decline

1 walk apart together Motion 0.9497 0.8365 -0.1132 0.9340 0.2799 -0.6541 0.9057 0.3491 -0.5566 -0.4413
2 walk apart Motion 0.9579 0.3042 -0.6537 0.9709 0.8123 -0.1586 0.8382 0.5761 -0.2621 -0.3581
3 surrender Motion 0.7212 0.6154 -0.1058 0.7308 0.4872 -0.2436 0.7372 0.4423 -0.2949 -0.2148
4 bite person Motion 0.6592 0.5732 -0.0860 0.6369 0.3949 -0.2420 0.6561 0.3631 -0.2930 -0.2070
5 fist bumping Motion 0.8190 0.6499 -0.1691 0.7774 0.5905 -0.1869 0.5816 0.3917 -0.1899 -0.1820
6 back pain Motion 0.5131 0.4739 -0.0392 0.6176 0.4216 -0.1960 0.5817 0.2745 -0.3072 -0.1808
7 throw object to person Motion 0.6730 0.5143 -0.1587 0.7143 0.5143 -0.2000 0.5556 0.3778 -0.1778 -0.1788
8 open bottle Motion 0.3735 0.2018 -0.1717 0.2289 0.1506 -0.0783 0.3916 0.1325 -0.2591 -0.1697
9 thumb down Motion 0.5623 0.4815 -0.0808 0.6364 0.3939 -0.2425 0.5320 0.3906 -0.1414 -0.1549
10 strangling neck Motion 0.5666 0.3746 -0.1920 0.4799 0.3715 -0.1084 0.4458 0.2817 -0.1641 -0.1548
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mance varies across different action categories. A clear pattern
emerges: actions characterized by large spatial displacement or
distinctive global body movement patterns (e.g., walk apart,
clapping each other, arm swings) consistently achieve high
accuracy, often exceeding 90%. These actions generate strong,
coherent spatio-temporal signatures that are easily captured by
GCN and Transformer-based architectures.

In contrast, fine-grained actions involving subtle local mo-
tions, particularly those dominated by hand and finger move-
ments, tend to yield significantly lower accuracy. Examples
include fold paper, make victory sign, and cutting paper, where
key discriminative cues are concentrated in a few distal joints.
Limitations in current skeleton extraction methods, especially in
reliably capturing finger joint trajectories, compound this chal-
lenge, leading to frequent misclassifications. Moreover, semantic
ambiguity between certain action pairs with similar skeletal
trajectories (e.g., different object manipulation tasks) further
degrades model performance.

Another noteworthy observation is that dyadic interactive ac-
tions generally outperform single-subject fine motor tasks, even
when the latter involve relatively simple body movements. The
relative positioning, coordinated timing, and interaction cues
in multi-person actions provide additional discriminative infor-
mation that helps models distinguish between similar patterns.
This reinforces the need for multi-person relational modeling in
future architectures.

Selective benefits of bone feature integration. Table IV
shows that adding the Bone feature type (joint-to-bone vectors)
produces consistent performance gains for only 7 out of 102 ac-
tions across the three models (LA-GCN, STTFormer, DeGCN).
This finding highlights that Bone features are highly task-
selective, benefitting actions where limb geometry, orientation,
and relational joint structure are critical for recognition. For
example, sneeze and thumb up show average gains of +8.26%
and +7.86%, respectively, both actions where subtle arm-hand
positional cues are decisive. Interestingly, high-mobility actions
like running and follow person also see moderate gains, suggest-
ing that bone vectors may help encode consistent gait and body
configuration patterns. However, the overall rarity of universal
improvement (only ∼7% of the action set) indicates that Bone
feature integration is not a universally reliable enhancement
and should be applied selectively, perhaps dynamically activated
based on action category or scene context.

Mixed and model-dependent effects of motion feature
integration. In stark contrast, Table V demonstrates that Motion
features (velocity/acceleration) yield no actions with unanimous
gains across all models. Instead, improvements are model-
dependent, with several cases showing substantial boosts for
certain architectures while harming others. For instance, play
magic cube gains a remarkable +24.68% for DeGCN and
+12.82% for STTFormer, yet LA-GCN’s performance drops
by -6.41%. Similarly, stand up benefits from motion cues in
STTFormer and DeGCN (both >+17%) but slightly declines
in LA-GCN (-2.39%). This inconsistency likely stems from
differences in temporal modeling and feature fusion strategies,
some architectures exploit motion magnitude effectively, while
others are disrupted by noise and irrelevant motion signals. Fine-
motor actions like cutting paper also show selective benefit,
supporting the idea that motion features may better serve actions

with distinct temporal rhythms, but require careful integration
to avoid destabilizing spatial representations.

Identifying actions harmed by additional feature types
Table VI lists the 10 actions most negatively impacted by
adding Bone or Motion features, with Motion emerging as the
primary culprit in all cases. The degradation can be severe:
walk apart together and walk apart suffer average drops of -
44.13% and -35.81%, respectively, with some models collapsing
from >95% accuracy to <35%. This suggests that for simple
locomotion or static postural actions, motion signals may inject
confounding noise, especially when natural variations in speed,
occlusion, or skeletal jitter mimic other movement patterns.
Complex interactive actions such as surrender and bite person
also degrade, implying that motion cues alone may mislead
the network when the core discriminative features are spatial
configurations or object interactions, not velocity patterns. The
consistent harm across all three models indicates a systematic
vulnerability in current feature fusion pipelines, where unfiltered
or poorly weighted motion signals can overwhelm more stable
joint-based representations.

Implications for feature fusion strategies. These findings
paint a nuanced picture: Bone features are occasionally bene-
ficial but mostly neutral, while Motion features are high-risk,
high-reward, capable of substantial gains in certain scenar-
ios but catastrophic losses in others. This calls for adaptive,
category-aware feature fusion strategies that can modulate or
gate feature type contributions based on action type, scene
context, or intermediate model confidence. For example, motion
integration might be prioritised for actions with pronounced
temporal dynamics (jump up, play magic cube), while deac-
tivated for stable-pose actions (walk apart). Similarly, bone
features could be selectively used for fine-hand gestures or
limb-orientation-dependent actions. Future architectures could
incorporate attention-based feature weighting or meta-learning
frameworks to dynamically decide which feature types to em-
phasise per instance.

D. Future Research Directions

Our in-depth evaluation of ANUBIS highlights persistent lim-
itations in current skeleton-based action recognition approaches,
particularly in how they handle heterogeneous action types, fea-
ture integration, and real-world deployment. These limitations
show opportunities for fundamental advances.

Adaptive feature-type fusion. Our results show that the
utility of different feature types, joint coordinates, bone vectors,
and motion cues, varies dramatically between action categories.
For example, large-scale displacement actions like walk apart
achieve near-saturation accuracy with joint alone, whereas fine-
grained manipulations such as cutting paper depend far more
on high-frequency motion cues. However, most existing fusion
pipelines treat all features as equally relevant, which can dilute
useful signals and even reduce performance.

Future work should replace static fusion with dynamic
feature-type selection. Models could learn action-feature rele-
vance mappings via attention gates or controller networks, acti-
vating only the most informative features per action instance or
even per temporal phase (e.g., preparation, execution, recovery).
Beyond selection, fusion should respect semantic hierarchy:
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joint often encodes high-level pose, bone captures execution
strategies, and motion reflects low-level motion dynamics.
Explicitly modeling this hierarchy, potentially with language-
aligned semantic anchors, could enable richer cross-feature
reasoning and improve both interpretability and generalization.

Large language model-driven action understanding. The
structured nature of skeleton data makes it an ideal partner for
multimodal large language models (MLLMs). While models like
CLIP excel in image-text alignment, their temporal reasoning
remains weak. The ANUBIS dataset, rich in multi-view, so-
cially interactive, and modern behavior patterns, offers fertile
ground for skeleton-informed temporal encoders that strengthen
video-language alignment. Key directions include skeleton-text
contrastive learning for fine-grained action semantics, skeleton-
guided attention mechanisms within MLLMs, and tri-modal
fusion of skeleton, video, and text. Skeletons bring unique
advantages: robustness to background/lighting, compact repre-
sentation for long sequences, and built-in privacy preservation.
These traits make them valuable for domains such as surveil-
lance, instructional content generation, and accessibility tools.
Notably, ANUBIS’s rear-view and complex dyadic interactions
could help train models that understand subtle interpersonal cues
often missed in RGB-based training.

Social safety and behavioral dynamics analysis. ANUBIS’s
diverse interpersonal scenarios create new opportunities for
safety-critical applications like bullying or harassment detection.
Skeleton-based systems can quantify spatial dynamics, role
asymmetries, and temporal escalation patterns without exposing
identifiable visual information. This enables early detection of
harmful behaviors while preserving privacy.

Further, the dataset’s coverage of pandemic-era social norms
(e.g., elbow touches, distancing gestures) enables studying cul-
tural and temporal shifts in interaction patterns. Combining
skeletal kinematics with interaction graphs could yield models
capable of detecting subtle power imbalances, changes in group
cohesion, or shifts in emotional state, all valuable for workplace
monitoring, school safety, and public health.

Healthcare, rehabilitation, and cognitive monitoring.
Skeleton-based recognition offers an objective, non-invasive
framework for medical and wellness applications. In rehabilita-
tion, precise joint tracking enables quantitative movement qual-
ity assessment, replacing subjective clinician scoring. Tailored
systems could detect Parkinson’s tremors, track stroke recovery
symmetry, or adapt training regimens dynamically. In eldercare,
gait and balance analysis can feed predictive models for fall
prevention, while continuous monitoring of daily activity pat-
terns supports independent living assessments. Beyond physical
health, subtle deviations in movement rhythm, coordination,
or social behavior may serve as early markers for cognitive
decline or mental health issues. The social interaction data in
ANUBIS could be leveraged to build behavioral baselines for
early intervention in schools, workplaces, and care facilities.

VI. CONCLUSION

This work provides a representation-centric review of
skeleton-based action recognition, introduces the ANUBIS
dataset as a challenging new benchmark, and delivers a thor-
ough evaluation of state-of-the-art models across joint, bone,

and motion feature types. Our analysis shows that multi-
representational fusion yields highly variable outcomes: bone
features are most effective for capturing fine-grained geometric
relations and coordinated movements, motion features benefit
actions with cyclic patterns or distinct phase transitions, yet for
large-scale displacements, synchronized multi-person activities,
or static postures, their inclusion can degrade accuracy, in some
cases severely. We trace this to the structural heterogeneity of
the underlying feature manifolds, Euclidean for joints, Lie group
for bones, and tangent space for motion, where naı̈ve fusion
introduces redundancy, noise, and semantic mismatch. These
findings challenge the prevailing assumption that combining
more features inherently improves performance, highlighting
the need for task-aware, semantically aligned, and structurally
compatible fusion strategies. By offering a dataset rich in
back-view perspectives, violent interactions, and multi-person
dynamics, ANUBIS not only exposes the limitations of current
approaches but also provides a robust foundation for developing
the next generation of adaptive, generalizable, and context-aware
skeleton-based action recognition models.
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Bajcsy. Berkeley mhad: A comprehensive multimodal human action
database. In 2013 IEEE workshop on applications of computer vision
(WACV), pages 53–60. IEEE, 2013.

[61] Omar Oreifej and Zicheng Liu. Hon4d: Histogram of oriented 4d normals
for activity recognition from depth sequences. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 716–723,
2013.

[62] Yunsheng Pang, Qiuhong Ke, Hossein Rahmani, James Bailey, and Jun
Liu. Igformer: Interaction graph transformer for skeleton-based human
interaction recognition. In European Conference on Computer Vision,
pages 605–622. Springer, 2022.

[63] Hyunjong Park, Jongyoun Noh, and Bumsub Ham. Learning memory-
guided normality for anomaly detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[64] Wei Peng, Xiaopeng Hong, Haoyu Chen, and Guoying Zhao. Learning
graph convolutional network for skeleton-based human action recognition
by neural searching. In The AAAI Conference on Artificial Intelligence
(AAAI), volume 34, pages 2669–2676, 2020.

[65] Zhenyue Qin, Pan Ji, Dongwoo Kim, Yang Liu, Saeed Anwar, and
Tom Gedeon. Strengthening skeletal action recognizers via leveraging
temporal patterns. In European Conference on Computer Vision, pages
577–593. Springer, 2022.

[66] Zhenyue Qin, Yang Liu, Pan Ji, Dongwoo Kim, Lei Wang, Saeed Anwar,
and Tom Gedeon. Fusing higher-order features in graph neural networks
for skeleton-based action recognition. IEEE Transactions on Neural
Networks and Learning Systems, 35(4):4783–4797, 2022.

[67] Helei Qiu, Biao Hou, Bo Ren, and Xiaohua Zhang. Spatio-temporal
tuples transformer for skeleton-based action recognition. arXiv preprint
arXiv:2201.02849, 2022.

[68] Jushang Qiu and Lei Wang. Evolving skeletons: Motion dynamics in
action recognition. In Companion Proceedings of the ACM on Web
Conference 2025, pages 1916–1937, 2025.

[69] Hossein Rahmani, Arif Mahmood, Du Huynh, and Ajmal Mian. His-
togram of oriented principal components for cross-view action recogni-
tion. IEEE transactions on pattern analysis and machine intelligence,
38(12):2430–2443, 2016.

[70] Hossein Rahmani, Arif Mahmood, Du Q Huynh, and Ajmal Mian. Hopc:
Histogram of oriented principal components of 3d pointclouds for action
recognition. In European conference on computer vision, pages 742–757.
Springer, 2014.

[71] Abhisek Ray, Ayush Raj, and Maheshkumar H Kolekar. Autoregressive
adaptive hypergraph transformer for skeleton-based activity recognition.
In 2025 IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), pages 9690–9699. IEEE, 2025.

[72] Lorenzo Seidenari, Vincenzo Varano, Stefano Berretti, Alberto Bimbo,
and Pietro Pala. Recognizing actions from depth cameras as weakly
aligned multi-part bag-of-poses. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 479–485,
2013.

[73] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d:
A large scale dataset for 3d human activity analysis. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages
1010–1019, 2016.

[74] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d:
A large scale dataset for 3d human activity analysis. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
1010–1019, 2016.

[75] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Skeleton-based
action recognition with directed graph neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7912–7921, 2019.

[76] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Two-stream adaptive
graph convolutional networks for skeleton-based action recognition. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12026–12035, 2019.

[77] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Adasgn: Adapting
joint number and model size for efficient skeleton-based action recog-
nition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13413–13422, 2021.

[78] Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tieniu Tan.
An attention enhanced graph convolutional lstm network for skeleton-
based action recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1227–1236, 2019.

[79] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu Tan. Skeleton-
based action recognition with spatial reasoning and temporal stack
learning. In European Conference on Computer Vision (ECCV), pages
103–118, 2018.

[80] Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying
Liu. An end-to-end spatio-temporal attention model for human action
recognition from skeleton data. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

[81] Yi-Fan Song, Zhang Zhang, and Liang Wang. Richly activated graph
convolutional network for action recognition with incomplete skeletons.
In International Conference on Image Processing (ICIP), pages 1–5.
IEEE, 2019.

[82] Tae Soo Kim and Austin Reiter. Interpretable 3d human action analysis
with temporal convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages
20–28, 2017.

[83] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun,
Gang Wang, and Jun Liu. Human action recognition from various
data modalities: A review. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(3):3200–3225, 2023.

[84] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Human
activity detection from rgbd images. plan, activity, and intent recognition,
64, 2011.

[85] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action
recognition by representing 3d skeletons as points in a lie group. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 588–595, 2014.

[86] Raviteja Vemulapalli and Rama Chellapa. Rolling rotations for recog-
nizing human actions from 3d skeletal data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4471–
4479, 2016.

[87] Hongsong Wang and Liang Wang. Modeling temporal dynamics and spa-
tial configurations of actions using two-stream recurrent neural networks.
In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 499–508, 2017.

[88] Hongsong Wang and Liang Wang. Beyond joints: Learning representa-
tions from primitive geometries for skeleton-based action recognition and
detection. IEEE Transactions on Image Processing, 27(9):4382–4394,
2018.

[89] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet
ensemble for action recognition with depth cameras. In 2012 IEEE
conference on computer vision and pattern recognition, pages 1290–
1297. IEEE, 2012.

[90] Jiang Wang, Xiaohan Nie, Yin Xia, Ying Wu, and Song-Chun Zhu.
Cross-view action modeling, learning and recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
2649–2656, 2014.

[91] Lei Wang. Analysis and evaluation of Kinect-based action recognition
algorithms. Master’s thesis, School of the Computer Science and
Software Engineering, The University of Western Australia, Nov 2017.

[92] Lei Wang. Robust human action modelling. PhD thesis, The Australian
National University (Australia), 2023.

[93] Lei Wang, Du Q. Huynh, and Piotr Koniusz. A comparative review
of recent kinect-based action recognition algorithms. TIP, 29(1):15–28,
2019.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

[94] Lei Wang, Du Q. Huynh, and Moussa Reda Mansour. Loss switching
fusion with similarity search for video classification. In IEEE ICIP, pages
974–978, 2019.

[95] Lei Wang and Piotr Koniusz. Self-supervising action recognition by
statistical moment and subspace descriptors. In Proceedings of the 29th
ACM international conference on multimedia, pages 4324–4333, 2021.

[96] Lei Wang and Piotr Koniusz. Temporal-viewpoint transportation plan
for skeletal few-shot action recognition. In Proceedings of the Asian
conference on computer vision, pages 4176–4193, 2022.

[97] Lei Wang and Piotr Koniusz. Uncertainty-dtw for time series and
sequences. In European Conference on Computer Vision, pages 176–
195. Springer, 2022.

[98] Lei Wang and Piotr Koniusz. 3mformer: Multi-order multi-mode trans-
former for skeletal action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5620–
5631, 2023.

[99] Lei Wang and Piotr Koniusz. Flow dynamics correction for action
recognition. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3795–3799.
IEEE, 2024.

[100] Lei Wang and Piotr Koniusz. Feature hallucination for self-supervised
action recognition. International Journal of Computer Vision (IJCV),
2025.

[101] Lei Wang, Piotr Koniusz, and Du Q Huynh. Hallucinating idt descriptors
and i3d optical flow features for action recognition with cnns. In
Proceedings of the IEEE/CVF international conference on computer
vision, pages 8698–8708, 2019.

[102] Lei Wang, Jun Liu, and Piotr Koniusz. 3d skeleton-based few-shot action
recognition with jeanie is not so naı̈ve. arXiv preprint arXiv:2112.12668,
2021.

[103] Lei Wang, Jun Liu, Liang Zheng, Tom Gedeon, and Piotr Koniusz.
Meet jeanie: a similarity measure for 3d skeleton sequences via
temporal-viewpoint alignment. International Journal of Computer Vision,
132(9):4091–4122, 2024.

[104] Lei Wang, Ke Sun, and Piotr Koniusz. High-order tensor pooling
with attention for action recognition. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3885–3889. IEEE, 2024.

[105] Lei Wang, Xiuyuan Yuan, Tom Gedeon, and Liang Zheng. Taylor videos
for action recognition. In Forty-first International Conference on Machine
Learning.

[106] Peng Wang, Fanwei Zeng, and Yuntao Qian. A survey on deep learning-
based spatio-temporal action detection. International Journal of Wavelets,
Multiresolution and Information Processing, 22(04):2350066, 2024.

[107] Shengqin Wang, Yongji Zhang, Hong Qi, Minghao Zhao, and
Yu Jiang. Dynamic spatial-temporal hypergraph convolutional network
for skeleton-based action recognition. In 2023 IEEE International
Conference on Multimedia and Expo (ICME), pages 2147–2152. IEEE,
2023.

[108] Yancheng Wang, Yang Xiao, Fu Xiong, Wenxiang Jiang, Zhiguo Cao,
Joey Tianyi Zhou, and Junsong Yuan. 3dv: 3d dynamic voxel for action
recognition in depth video. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[109] Syed Talal Wasim, Muhammad Uzair Khattak, Muzammal Naseer,
Salman Khan, Mubarak Shah, and Fahad Shahbaz Khan. Video-focalnets:
Spatio-temporal focal modulation for video action recognition. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023.

[110] Jiangning Wei, Lixiong Qin, Bo Yu, Tianjian Zou, Chuhan Yan, Dandan
Xiao, Yang Yu, Lan Yang, Ke Li, and Jun Liu. Va-ar: Learning velocity-
aware action representations with mixture of window attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pages 8286–8294, 2025.

[111] Yu-Hui Wen, Lin Gao, Hongbo Fu, Fang-Lue Zhang, and Shihong Xia.
Graph cnns with motif and variable temporal block for skeleton-based
action recognition. In AAAI Conference on Artificial Intelligence (AAAI),
volume 33, pages 8989–8996, 2019.

[112] Cong Wu, Xiao-Jun Wu, and Josef Kittler. Spatial residual layer and
dense connection block enhanced spatial temporal graph convolutional
network for skeleton-based action recognition. In proceedings of the
IEEE/CVF international conference on computer vision workshops, pages
0–0, 2019.

[113] Lu Xia, Chia-Chih Chen, and Jake K Aggarwal. View invariant
human action recognition using histograms of 3d joints. In 2012 IEEE
computer society conference on computer vision and pattern recognition
workshops, pages 20–27. IEEE, 2012.

[114] Chunyu Xie, Ce Li, Baochang Zhang, Chen Chen, Jungong Han, and
Jianzhuang Liu. Memory attention networks for skeleton-based action

recognition. In International Joint Conference on Artificial Intelligence,
2018.

[115] Jianyang Xie, Yanda Meng, Yitian Zhao, Nguyen Anh, Xiaoyun Yang,
and Yalin Zheng. Dynamic semantic-based spatial-temporal graph
convolution network for skeleton-based human action recognition. IEEE
Transactions on Image Processing, 2024.

[116] Haojun Xu, Yan Gao, Zheng Hui, Jie Li, and Xinbo Gao. Language
knowledge-assisted representation learning for skeleton-based action
recognition. IEEE Transactions on Multimedia, pages 1–16, 2025.

[117] Kailin Xu, Fanfan Ye, Qiaoyong Zhong, and Di Xie. Topology-aware
convolutional neural network for efficient skeleton-based action recogni-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 2866–2874, 2022.

[118] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph
convolutional networks for skeleton-based action recognition. In Thirty-
second AAAI conference on artificial intelligence, 2018.

[119] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convo-
lutional networks for skeleton-based action recognition. In Proceedings
of the AAAI conference on artificial intelligence, volume 32, 2018.

[120] Jiewen Yang, Xingbo Dong, Liujun Liu, Chao Zhang, Jiajun Shen,
and Dahai Yu. Recurring the transformer for video action recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 14063–14073, June 2022.

[121] Fanfan Ye, Shiliang Pu, Qiaoyong Zhong, Chao Li, Di Xie, and Huiming
Tang. Dynamic gcn: Context-enriched topology learning for skeleton-
based action recognition. In International Conference on Multimedia
(MM), pages 55–63, 2020.

[122] Lin Yuan, Zhen He, Qiang Wang, Leiyang Xu, and Xiang Ma. Spatial
transformer network with transfer learning for small-scale fine-grained
skeleton-based tai chi action recognition. In IECON 2022–48th Annual
Conference of the IEEE Industrial Electronics Society, pages 1–6. IEEE,
2022.

[123] Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L Berg,
and Dimitris Samaras. Two-person interaction detection using body-pose
features and multiple instance learning. In 2012 IEEE computer society
conference on computer vision and pattern recognition workshops, pages
28–35. IEEE, 2012.

[124] Xiao Yun, Chenglong Xu, Kevin Riou, Kaiwen Dong, Yanjing Sun,
Song Li, Kevin Subrin, and Patrick Le Callet. Behavioral recognition
of skeletal data based on targeted dual fusion strategy. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pages 6917–
6925, 2024.

[125] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue,
and Nanning Zheng. View adaptive recurrent neural networks for
high performance human action recognition from skeleton data. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2117–2126, 2017.

[126] Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jianru
Xue, and Nanning Zheng. Semantics-guided neural networks for effi-
cient skeleton-based human action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1112–1121, 2020.

[127] Xikun Zhang, Chang Xu, and Dacheng Tao. Context aware graph
convolution for skeleton-based action recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14333–14342, 2020.

[128] Rui Zhao, Kang Wang, Hui Su, and Qiang Ji. Bayesian graph convolution
lstm for skeleton based action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6882–
6892, 2019.

[129] Yuxuan Zhou, Zhi-Qi Cheng, Chao Li, Yanwen Fang, Yifeng Geng, Xu-
ansong Xie, and Margret Keuper. Hypergraph transformer for skeleton-
based action recognition. arXiv preprint arXiv:2211.09590, 2022.

[130] Yuxuan Zhou, Xudong Yan, Zhi-Qi Cheng, Yan Yan, Qi Dai, and Xian-
Sheng Hua. Blockgcn: Redefining topology awareness for skeleton-based
action recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

[131] Liyun Zhu, Lei Wang, Arjun Raj, Tom Gedeon, and Chen Chen.
Advancing video anomaly detection: A concise review and a new dataset.
Advances in Neural Information Processing Systems, 37:89943–89977,
2024.

[132] Yisheng Zhu, Hui Shuai, Guangcan Liu, and Qingshan Liu. Multilevel
spatial–temporal excited graph network for skeleton-based action recog-
nition. IEEE Transactions on Image Processing, 32:496–508, 2023.


	Introduction
	A Representation-Centric Review
	Joint-Based Methods
	Spatial Modeling
	Temporal Modeling

	Joint-Bone Enhanced Methods
	Motion Enhanced Methods
	Derived Skeleton Representation Methods

	ANUBIS: A New Benchmark Dataset
	Dataset Collection
	Comparison with Existing Datasets

	Evaluation and Benchmarking
	Experimental Setups
	Benchmark Comparison: NTU vs. ANUBIS

	In-Depth Analysis and Discussion
	Confusion Matrix Analysis and Dataset Challenges
	Action-Level Performance Trends on ANUBIS
	Analysis of Feature Type Impact
	Future Research Directions

	Conclusion
	References

