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A man takes a big jump forward.
StableMoFusion

A person flips to the left side.

A man takes a big jump forward.
ANT

A person flips to the left side.

Figure 1: Our ANT can be seamlessly plugged into diffusion-based text-to-motion models to generate semantically rich, fine-

grained, and naturally smooth motions with high precision.
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Abstract

While diffusion models advance text-to-motion generation, their
static semantic conditioning ignores temporal-frequency demands:
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early denoising requires structural semantics for motion founda-
tions while later stages need localized details for text alignment.
This mismatch mirrors biological morphogenesis where develop-
mental phases demand distinct genetic programs. Inspired by epi-
genetic regulation governing morphological specialization, we pro-
pose (ANT), an Adaptive Neural Temporal-Aware architecture.
ANT orchestrates semantic granularity through: (i) Semantic Tem-

porally Adaptive (STA) Module: Automatically partitions denois-
ing into low-frequency structural planning and high-frequency
refinement via spectral analysis. (ii) Dynamic Classifier-Free
Guidance scheduling (DCFG): Aaptively adjusts conditional to
unconditional ratio enhancing efficiency while maintaining fidelity.
Extensive experiments show that ANT can be applied to various
baselines, significantly improving model performance, and achiev-
ing state-of-the-art semantic alignment on StableMoFusion. Code
can be found on https://github.com/CCSCovenant/ANT.

"Details make perfection, and perfection is not a detail."
— Leonardo da Vinci

CCS Concepts

« Computing methodologies — Computer vision.
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1 Introduction

Text-driven human motion generation has recently attracted signif-
icant attention due to the semantic richness and intuitive nature of
natural language descriptions, with broad applications in animation,
film production, virtual/augmented reality (VR/AR), and robotics
[3, 4, 30-32]. While textual prompts provide valuable semantic guid-
ance for motion synthesis, they often suffer from incomplete or
inaccurate semantic representations, leading to suboptimal genera-
tion quality [4, 39]. Ensuring faithful alignment between generated
motions and textual descriptions remains a critical challenge.
Current research in text-to-motion generation primarily focuses
on two paradigms: VAE-based models that encode motions into
discrete tokens for prediction using autoregressive (AR) [22, 45]
or non-autoregressive (NAR) [8, 31, 32] frameworks, and diffusion-
based models that gradually transform Gaussian noise into mo-
tion sequences through iterative denoising under text conditioning
[5, 6, 20, 40, 48]. Among these approaches, vector quantization
(VQ)-based discrete generation methods have become the domi-
nant paradigm in human motion synthesis [8, 31]. However, despite
their effectiveness, these methods suffer from inherent drawbacks,
including information loss and reduced motion diversity [11, 45].
Conversely, diffusion-based approaches offer unique advantages,
such as fine-grained detail generation, diverse motion outputs, and
physically plausible movement synthesis, making them a promising
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alternative [3, 40, 42, 46]. Nevertheless, diffusion-based methods
still lag behind VQ-based models in terms of overall performance
[20, 40].

Recent efforts have sought to bridge this performance gap by
enhancing motion representations within diffusion models [3, 17].
One notable approach involves projecting motion data into a com-
pact and fine-grained latent space using a 1D ResNet-based autoen-
coder, thereby improving motion structure modeling and prediction
accuracy [17]. While such methods mitigate some of the limitations
of VAE-based approaches, they remain significantly inferior to
state-of-the-art techniques. Moreover, recent studies [4] reveal that
diffusion-based text-to-motion models exhibit limitations in align-
ing generated motions faithfully with input text descriptions. To
better understand the generative process of diffusion-based models,
prior work [3] has analyzed the denoising mechanism and pro-
posed a two-phase generation framework: a semantic planning
stage for low-frequency feature modeling and a fine-grained re-
finement stage for high-frequency generating. This decomposition
raises a crucial research question: What distinct roles does tex-
tual information play in these two phases? How can we en-
hance the semantic alignment of diffusion-based approaches
to achieve more accurate and expressive motion synthesis?

Drawing inspiration from biological processes, Hinton likened
the metamorphosis of insects to different stages of computational
learning: larval stages prioritize energy absorption, while adult
stages focus on locomotion and reproduction [15]. Analogously, the
diffusion process in motion generation should follow a phase-wise
prioritization, capturing low-frequency motion structures in early
denoising steps and refining high-frequency motion details in later
stages. However, existing methods [3, 20, 40] apply CLIP-encoded
[35] text embeddings uniformly across all denoising steps, failing to
distinguish between these two phases. This uniform application can
lead to incomplete motion structures in early stages and insufficient
detail refinement in later stages. However, explicitly decomposing
semantic information in the frequency domain remains a significant
challenge.

To address these issues, we propose ANT (Adaptive Neural
Temporal-Aware Text-to-Motion Model). Unlike conventional diffu-
sion based approaches, ANT incorporates a plug-and-play adaptive
Semantic Temporal-Aware Module (STA) and a Dynamic schedule
method (DCFG) based CFG [16]. STA model dynamically adjusts
its response at different timesteps in the denoising process. This
module adapts autonomously without requiring explicit supervi-
sion, enabling progressive semantic modulation. Specifically, STA
prioritizes global motion structures (low-frequency) during the
early denoising steps and refines detailed motion variations (high-
frequency) in the later stages. For the CFG Schedule, based on
STA’s ability to distinguish between early and late stages in text
attention, we dynamically adjust the ratio between conditional
and unconditional results during sampling [24, 37]. In the later
stages, we switch to the more efficient unconditional generation.
Through these temporally-aware method, our method improves
semantic alignment, resulting in more accurate, diverse, and phys-
ically plausible motion synthesis. We conducted experiments on
MDM [40] and StableMoFusion [20]. The results demonstrate signif-
icant improvements in FID and R-Precision. Additionally, by taking
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Figure 2: Comparison with SOTA models. The figure presents
a comparison with the best-performing text-to-motion mod-
els to date, where a closer distance to the origin indicates
better overall performance. ANT achieves significant im-
provements when applied to both MDM and StableMoFusion.
Notably, ANT on StableMoFusion outperforms all other mod-
els in terms of R-Precision, highlighting its effectiveness and
superiority among state-of-the-art methods.
StableMoFusion as its baseline, ANT surpasses representative VAE-
based models (Figure 2), such as MMM [32] and T2M-GPT [45],
across all metrics, further demonstrating the potential of diffusion-
based methods. Our method is simple and efficient, introducing
minimal additional computational overhead while being effective
across different architectures, including DDIM [21] and DPM-Solver
[25]. This provides a novel and interpretable research direction for
diffusion-based text-to-motion methods.
We summarize our contributions as follows:

(1) We propose the first dynamic text encoding modulation
framework for text-to-motion generation by analyzing the
denoising mechanism. The integration of our Semantic Tem-
poral Awareness Module significantly improves alignment
between generated motions and textual descriptions.

(2) We conduct an in-depth analysis of the denoising mecha-
nism in text-to-motion generation and provide a new DCFG
schedule Method to improve sampling efficiency.

(3) Extensive experiments demonstrate that our method achieves
state-of-the-art performance in text-motion alignment, vali-
dated by quantitative metrics and user studies.

2 Related Work

Text-to-Motion Generation. Recent advancements in text condi-
tioned human motion generation have been driven by two primary
methodologies: diffusion-based models and VAE-based models. Dif-
fusion models [5, 6, 38, 39, 47, 48] have shown remarkable potential
in modeling the complex relationships between textual inputs and
motion sequences. Prominent works include MotionDiffuse [47],
which leverages cross-attention for text integration; MDM [40],
which explores diverse denoising networks such as Transformer
and GRU; PhysDiff [43], which incorporates physical constraints to
enhance realism. While ReMoDiffuse [48] improves performance
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through retrieval mechanisms, MotionLCM [6] achieves real-time,
controllable generation via a latent consistency model.

On the other hand, VAE-based models have also demonstrated
strong performance in multi-modal motion generation. ACTOR [28]
proposes a Transformer-based VAE for generating motion from pre-
defined action categories, while TEMOS [29] extends ACTOR with
an additional text encoder to support diverse motion sequences,
primarily focusing on short sentences. Guo et al. [9] introduce
an autoregressive conditional VAE that conditions on generated
frames and text features, predicting motions based on text length.
TEACH [2] builds upon TEMOS to enable the generation of longer,
temporally coherent motion compositions from sequential natural
language descriptions. TM2T [12] jointly trains both text-to-motion
and motion-to-text tasks, improving bidirectional generation qual-
ity. T2M-GPT [45] quantizes motion clips into discrete markers and
utilizes a transformer-based model to generate subsequent markers.

Despite the advancements in both diffusion-based and VAE-
based approaches, a common limitation persists: reliance on the
CLIP encoder [35]. Many existing methods, including diffusion-
based models [20, 40, 47] and VAE-based models like MotionCLIP
[38], process textual descriptions through CLIP to obtain fixed text
feature representations. However, this static encoding fails to pro-
vide rich, dynamic semantic information throughout the motion
generation process. As a result, models struggle to adaptively in-
terpret textual nuances over time, leading to inconsistencies in
generated motions and limiting expressiveness.

Senabtic embedding of Text-to-MotionIn the field of text-to-
motion synthesis, a prevalent strategy involves leveraging the CLIP
text encoder [35] to derive semantic embeddings. This approach
is adopted by models such as MoMask [8] and StableMoFusion
[20]. Alternative methodologies incorporate pretrained word em-
beddings in conjunction with sequence processing layers, typically
Transformers or Gated Recurrent Units (GRUs) [12], as demon-
strated in the TM2T framework. More recent developments have
seen the integration of novel encoders: MotionGPT [22] employs
the T5 model, while MDM [40], initially utilizing CLIP, has subse-
quently experimented with BERT as an alternative text representa-
tion module.

However, each of these encoding strategies exhibits distinct lim-
itations. Specifically, the GRU-based encoder architecture, as im-
plemented in TM2T [12], encounters difficulties with processing
extended sequences, capturing long-range dependencies effectively,
and maintaining computational efficiency. These shortcomings can
potentially impair the nuanced understanding of complex textual
prompts and consequently reduce the fidelity of the generated mo-
tion sequences. Although encoders predicated on CLIP, T5 [36] and
BERT [7] generally yield more robust textual representations, a
significant constraint stems from the static nature of their output
embeddings throughout the iterative diffusion denoising process.
As these embeddings do not dynamically evolve in relation to the
diffusion time step, they may not sufficiently address the global
conditioning requirements intrinsic to sophisticated generative
modeling paradigms. Contrasting existing techniques our method
dynamically modulates text embeddings per timestep via a Seman-
tic Temporal-Aware Module (STA). This module aligns adaptive
semantic evolution with the denoising process boosting motion-text
alignment and generation fidelity.
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Figure 3: Overall Architecture of ANT. In part (a) Training, we introduce the Semantic Temporal Awareness (STA) module. STA
is inserted between the text encoder and the U-Net, dynamically modulating the text features by attending to the diffusion
timestep ¢. In part (b) Inference, we observe that STA enables the model’s attention to textual semantics to gradually decrease
as sampling progresses. Based on this, we propose a CFG process that aligns with dynamic semantic adjustment: the CFG scale
is progressively reduced during sampling, and a more efficient unconditional generation is applied in the later stages.

3 Method

3.1 Preliminaries

3.1.1 Text-to-Motion Process. We follow the diffusion frame-
work of StableMoFusion [20] for text-conditioned human motion
generation. Let ¢ € R% be a textual description encoded by a
pretrained language model, where d. denotes the text embedding
dimension. The target motion sequence xg € RNXdm consists of N
frames, where each frame contains dpy,-dimensional motion param-
eters. The forward diffusion process progressively adds Gaussian
noise to xg over T timesteps:

x; = Varxo + V1 — are,

where {D‘f}thl € (0,1)7 is the noise schedule with a; = I_I;:l(l -
Ps) and fs as the variance schedule.

In the reverse process, a motion-denoising network Gy parame-
terized by 0 is trained to predict the original motion xo from the
noisy input x;, conditioned on the timestep ¢ and text embedding c:

€~ N(0,1), (1)

minErx.e.c [IGy (xz, £, ©) = xoll3]. @

During inference, x¢ is generated by iteratively denoising from
x1 ~ N(0,1) using a sampler such as DPM-Solver++ [25], which
accelerates generation by reducing the number of reverse steps
from T = 1000 to as few as 10 steps. Given a textual prompt 7, the
embedded text vector ¢ = CLIP(7") is cached to avoid redundant
computations. Classifier-Free Guidance (CFG) is applied to trade

off text-motion alignment and motion fidelity:
Gs(x1,t,¢) = Go(x1,£,0) + @ - (Go(xr,t,¢) — Go(x4,1,0)),  (3)

where o is the guidance scale and Gg (x¢, £, @) denotes unconditional pre-
diction. Half-precision floating-point computation (FP16) further accelerates
inference without compromising quality. This pipeline ensures efficient and
high-quality generation of N-frame motion sequences within a fraction of
the original computational cost.

3.1.2 The Denoising Process. In diffusion models, low-frequency com-
ponents are recovered earlier than high-frequency components during the
reverse denoising process [34]. Formally, given a motion signal in the fre-
quency domain 1, (w), the signal-to-noise ratio (SNR) at frequency w is
defined as:
|1t () |?

fol g%(s) ds’
where i1y (w) is the initial power spectral density of the motion signal and

SNR(w) = )

A)t g% (s) ds represents the accumulated noise energy. For higher frequencies
wH, the SNR decreases more rapidly than for lower frequencies wy, i.e.,

SNR(wg) < SNR(wr), VYog > wr. (5)

As a result, low-frequency components are restored first, providing a
semantic foundation for the subsequent recovery of high-frequency details.

3.1.3 Low-Frequency Structure Dependence on High-Frequency
Motion. In the reverse denoising process of diffusion models for motion
generation, the accurate restoration of high-frequency motion components
is structurally dependent on the consistent reconstruction of low-frequency
components.
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Let m; denote the motion signal representation at timestep ¢. Let its
frequency domain representation be partitioned into low-frequency com-
ponents ni j, (corresponding to frequencies w € Q) and high-frequency
components 1, fy (corresponding to frequencies w € Qp, where typically
min(Qp) > max(Qy )). The reverse diffusion step estimates the posterior
distribution p(m;_1|m;).

The dependency implies that the uncertainty regarding the high-frequency
components m,_1 f at step ¢ — 1, given the noisy observation m;, is reduced
when conditioned on the concurrently estimated low-frequency compo-
nents m;_1 . Formally, this relationship can be expressed via conditional
variance reduction:

B,y p~p(-Img) [Var[th;—1,5 | ms,thy_10]] < Var[m,_1 5 | m]. (6)

This inequality holds assuming that fh;_; fr and ;1 1, are not condition-
ally independent given m;. This dependency arises because the denoising
network, in estimating p (m;_; |m; ), implicitly leverages the structural in-
formation inferred from the more robust low-frequency content within m,
(and consequently ;1 1) to guide the reconstruction of the high-frequency
details m;_; f.

Furthermore, the inherent characteristics of signal corruption during the
diffusion process amplify this dependency. The signal-to-noise ratio (SNR)
typically decreases with increasing frequency, particularly in later diffusion
steps (smaller ?):

SNR(wp) < SNR(wp,), for typical wg € Qp, wr € Qr. (7)

Consequently, the high-frequency components within the noisy signal
m; are significantly more obscured by noise compared to the low-frequency
components. Accurate restoration of m;_1 gy therefore relies substantially
on the contextual foundation provided by the simultaneously restored low-
frequency structure m,_; . This hierarchical reliance is crucial for gen-
erating motions that exhibit both semantic consistency (e.g., fine-grained
gestures aligning with overall body posture and action) and spatial coher-
ence (e.g., detailed limb movements respecting the constraints imposed by
the larger skeletal configuration).

3.2 ANT Architecture

The ANT architecture (Figure 3) optimizes the denoising steps for both
semantic information and Classifier-Free Guidance (CFG). To fully explore
the distinct roles of textual semantics in the denoising process of diffusion
models, we introduce a Semantic Temporal Awareness (STA) module in
Section 3.2.1. This module dynamically adjusts the text embeddings by
incorporating timestep features, emphasizing low-frequency semantics in
the early denoising stages and focusing on high-frequency details in the
later stages. In Section 3.2.2, based on observations of the attention to textual
features in the ANT architecture, we design a dynamic planning strategy
for Classifier-Free Guidance (CFG) that gradually weakens textual guidance
during the denoising process.

3.2.1 Semantic Temporal Awareness Module. Unlike previous ap-
proaches [8, 20, 40, 45], which directly use the text features ¢ from a text
encoder as conditions for predicting the output, we introduce the STA mod-
ule. Positioned between the text features and the U-Net, this module is
inspired by [18] and aims to design a connector that enhances the informa-
tiveness of the conditions used for noise prediction. Below is the specific
process of the STA: The Learnable Tokens L are combined with the text
features c¢ from the encoder to form a timestep-modulated feature L;:

Ly =L® z;. (8)

Here, z; is the time feature and @ denotes residual connection. This
timestep-modulated feature is then processed through the Adaptive Layer
Normalization (AdaLN) [19], which is defined by the following equation:

. Ly +
f,=y- t a(zt)+

B &)

o+¢&
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Figure 4: Distribution of attention weights in the UNet cross-
attention module over the entire test set. The left panel cor-
responds to the baseline, and the right panel represents our
method. In each panel, the red line denotes the variance of
the attention weights, while the blue heatmap illustrates
their distribution, with darker colors indicating a higher
frequency of occurrence. The heatmap values have been nor-
malized to a range of 0 to 1.

where y, @(t), 0, and f are learnable parameters, and ¢ is a small constant to
prevent division by zero. The output, after being processed through CrossAt-
tention and a residual connection, is integrated with temporal information
to produce the semantic feature with time-dependent text feature c;:

é; = L, @ CrossAttention(c, L;). (10)

This process allows the model to dynamically incorporate both the tem-
poral and semantic aspects, and unsupervisedly leverage the denoising prior
to learn the semantic features at different time steps.

3.22 Adaptive Guidance Schedule. Classifier-Free Guidance (CFG) is
a widely used technique in generative models (such as diffusion models)
that enhances conditional generation by computing both conditional and
unconditional outputs and interpolating between them using a guidance
scale. While prior work [20, 40] typically adopts a fixed guidance scale (e.g.,
w = 4.5) to improve semantic alignment, our denoising observations reveal
that a static scale fails to adapt to the varying needs of different stages in
the generation process.

As illustrated in the right of Figure 4, we visualize the distribution of
attention values to text features in the ANT U-Net across the entire test set
(in blue), and additionally report the variance of the attention values (in red).
We observe that, as denoising progresses, the attention values increasingly
concentrate around 0. This indicates that in the early stages, the network
tends to focus more on capturing semantic information—reflected in a
broader and more dispersed distribution of attention values across different
tokens—while in the later stages, semantic attention diminishes, and the
model gradually shifts toward unconditional generation. These insights
suggest that stronger guidance should be applied during the early denoising
steps, followed by a progressive reduction in guidance intensity, ultimately
favoring unconditioned generation as the process converges.

Moreover, CFG increases computational overhead by requiring both con-
ditional and unconditional generations. From an efficiency perspective, we
further analyze that when the number of denoising steps is sufficiently large,
the model has already captured sufficient semantic information. At this
stage, the primary objective shifts to refining fine-grained, high-frequency
details. Compared to conditional generation, unconditional generation is
better at capturing the natural and fluid distribution of motion. Further-
more, based on Theorem 3.1.3, high-frequency information generation relies
heavily on low-frequency components. This insight motivates us to forgo
CFG in the later stages of denoising and instead perform more efficient
unconditional generation.

To implement this adaptive guidance mechanism, we define a time-
dependent guidance scale w; as follows:
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Method Venue FID | R-Precision T Diversity - MM-Dist| MultimodalityT
Top1 Top2 Top3
HumanML3D
Ground Truth - 0.002%0:000 0 511%0:003 9 703%0.003 (7970002 g 5(3+0.065 - -
MLD [5] CVPR 2023 0.473%0013 0 481%0-003 (9 73%0.003 (7720002 g 794+0.082 3.196%0-010 2.413%0.079
ReMoDiffuse [48] ICCV 2023 0.103%0-004  ,510%0-005 0 69g*0-006  ( 795%0-004 g 18+0.075 3.025%0-008 1.795%0-043
MotionDiffuse [47] TPAMI 2024 0.630%0001 0 491%0-001 6g1#0.001 (7820001 g 47(*0.049 3.113%0-001 1.553%0:042
MotionLCM [6] ECCV 2024 0.467%0-012  ,502%0-003 0 701*0.002  ( gp3+0-002 g 361+0.660 3.012%0:007 2.172%0.082
T2M-GPT [45] CVPR 2023 0.141%0005 (. 492%0-003  ( 79+0.002 () 775+0.002 g 799+0.082 3.121%0:009 1.831%0-048
MMM [32] CVPR 2024 0.089%0-002  ,515¥0:002 g 708+0.002 () gg+0-002 g 577%0.050 2.926+0-007 1.226%0-035
MoMask [8] CVPR 2024 0.045%0-002 0 521%0-002 (7130002 g(7+0.002 - 2.958+0-008 1.241%0-040
MDM [40] ICLR 2023 0.544t0.044 0.32010,005 0.498i0'004 0.611i0'007 9.559r0.086 5.556i0'027 2_799t0.072
StableMoFusion [20] ACM MM 2024  0.152%0-004 9 546%0-002 () 74920002 ( g35+0.002 g 46+0.002 2.781%0-011 1.362%0-062
StableMoFusion Efficiency ACM MM 2024  2.845%0927  ,401%0-003 0 599+0.003  ( 719*0.003 g 699+0.098 - 2.276+0:005
ANT (Ours, on MDM) - 0.377%0-038  .456¥0-006 0 56+0-007  ( 763%0-006 g gge*0-068 - 2.595%0-006
ANT (Ours, on StableMoFusion) - 0.099%0:004 0 560%0-002 9 751%0.003 () g47+0.002 g 585%0.090 3 g74g+0.015 1.874%0:062
ANT (Ours, on StableMoFusion, w/o DCFG) - 0.071%0-004 9 565+0-006  ( 756+0.003 () g43+0.002 g 585+0.09 2.763%0-010 1.827%0:110
KIT-ML

Ground Truth _ 0‘03li0'004 0.42410,005 0.649i0'006 0.77910,006 11.080i0'097 _ _
MLD [5] CVPR 2023 0.404%0027  (.390%0-008 (5 09*0-008 () 73420007 10 goo*0-117 3 204%0.027 2.192%0:071
ReMoDiffuse [48] ICCV 2023 0.155%0-006 0 427%0-014 0 641#0.004  ( 765+0.055 10 goo*0-105 1 p39*0.028 1.239%0:028
MotionDiffuse [47] TPAMI 2024 1.954%0-062 41720004 621%0-004 5 73920.004 17 1900143 3 958+0.005 0.730%0-013
T2M-GPT [45] CVPR 2023 0.514%0:029 0.416%0:006  ,627%0-006  .745¢0:006  70,921%0-108 3 70.023 1.570%0-0%9
MotionGPT [22] NeurIPS 2023 0.510%0:016 36650005 05580004 0 680*0-005  10.350%0-08¢ 3 527+0.021 2.328%0-117
MMM [32] CVPR 2024 0.316%0:028  0.404%0005 06210005 .744%0.004  70,970%0101 2 9770019 1.232%0:0%9
MoMask [8] CVPR 2024 020430011 0.43320-007 0 656+0.005  ,781:+0.005 - 2.779%0:022 113120043
MDM [40] ICLR 2023 0.497%0:021 (1640004 . 291%0.004  396+0.004 70 8470119 9 1910022 1.907+0-214
StableMoFusion [20] ACM MM 2024 0.258%0-029  0.445%0-006 0, 660%0-005  ,782%0-004 10 936+0077 2 g00*0-018 1.362%0-002
ANT (Ours) - 0.23620-015 0.465%0-007 0 69420-006 81320005 17 029*0-102 3 6g9*0-020 1.578%0:056

Table 1: Quantitative comparison on the HumanML3D and KIT-ML datasets. + indicates a 95% confidence interval. |: Lower is
better. : Higher is better. —: Closer to the Ground Truth (GT) is better. Red and Blue indicate the best and the second-best
results respectively across all methods for each metric. Our method, ANT, demonstrates state-of-the-art or highly competitive

performance across multiple key metrics on both datasets.

@ = Omin + ¢ (t) (Omax — @min), (11)
where wmax and wmin denote the maximum and minimum guidance scales
respectively, and ¢ (¢) is a monotonically decreasing function that controls
the decay of guidance strength over the denoising timestep ¢. In this paper,
We leverage cosine schedule as ¢ ().

(12)

1 T-t
wr = max{wmin + 3 1+cos(/1T7r) (Wmax — @min),0}.

Here, A denotes the period coefficient, and T represents the total number
of time steps. Accordingly, the noise prediction at timestep ¢ with Classifier-
Free Guidance is computed as:

(13)
where €.ong and €yncond represent the conditional and unconditional denois-
ing predictions, respectively.

To further improve efficiency during the late stages of denoising where
semantic conditioning becomes less influential, we omit the conditional
branch altogether when ¢ exceeds a certain threshold (e.g., t > 0.57). In
such cases, we use:

€CFG = €uncond + @t - (écmnd - éuncmnd) s

€ = €uncond- (14)

Thereby reducing computational overhead while promoting the gen-
eration of coherent high-frequency details aligned with the learned data
distribution.

4 Experiments

We evaluate our approach on two standard motion-language benchmarks:
HumanML3D [10] and KIT-ML [33]. HumanML3D con- tains 14,616 motion
sequences from AMASS [26] and HumanAct12 [13], each paired with three
text descriptions (44,970 total), covering diverse actions like walking, exer-
cising, and dancing. KIT-ML in- cludes 3,911 motions and 6,278 descriptions,
serving as a smaller-scale benchmark. We follow StableMoFusion’s pose
representation and apply mirroring-based augmentation. Data is split into
training, validation, and test sets with a ratio of 0.8:0.15:0.05. Evaluation
Metrics. In addition to the commonly utilized metrics such as Frechet In-
ception Distance (FID) [14], R-Precision, Multimodal Distance (MM-Dist),
and Diversity, which are employed by StableMoFusion [20]. Furthermore,
human evaluation is employed to obtain accuracy and human preference
results for the outputs generated by the model.

4.1 Experimental Setup

We adopt model architecture settings similar to those of MDM [40] and
StableMoFusion [20]. For MDM, we use a batch size of 64 and the AdamW
[23] optimizer. Our models are trained with a time step of T = 50, following
a cosine noise schedule. The total number of training iterations is fixed at
120,000, with a learning rate of 1 X 10™%. For StableMoFusion, we adhere to
its training methodology, running for 200,000 steps. The time step is set to
T = 50, and we employ DPM-Solver for inference, using 10 actual sampling
steps. The A is set to 1.5 and unconditional generation start time is set to
0.5T. Wmax and wmin is set to 3.0 and 1.5, The optimal values for wmax
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Example 1: A person flips to the left side.

MoMask

StableMoFusion MDM

Example 2: A person walks calmly in irregular counterclockwise circles with their left arm raised to chest-level.

ANT MoMask

StableMoFusion MDM

Figure 5: Visualization Comparison. We compare the visual results of ANT with other three state-of-the-art methods. In both
examples, ANT consistently demonstrates more accurate, natural, and fine-grained motion generation compared to the others.

Method Top1 Top2 Top3

BERT (w/o STA) 0.547%0-003  ( 742%0.002 g35+0.002
BERT (w STA) 0.551%0:002  ( 747%0.003 () g36+0.002
MoCLIP (w/o STA)  0.528%0-002 ¢ 718%0-002 g70.002
MoCLIP (w STA) 0.554%0:003  ( 747%0.003 () g38+0.002
LongCLIP (w/o STA)  0.528%0:002 (7180002 g12+0.002
LongCLIP (w STA) 0.513%0-003 702%0-002 797+0.003
CLIP (w/o STA) 0.538+0-003 ¢ 730+0-002  ( gp+0.002
CLIP (w STA) 0.523%0:003 71720002 ( g19+0.002
T5 (w/o STA) 0.549%0-004  ( 747+0.004 () g3g+0.003
T5 (w STA) 0.565%0:006 (7560003 ( 843+0.002

Table 2: Experimental results for different methods on text-
to-motion generation. The term "w STA" indicates the use
of an STA. All values are reported as mean and =+ indicates a
95% confidence interval.

and wmin are selected via grid search on the validation set, selecting those
that achieved the best Top-1 performance (See detail in the appendix F),
respectively. The entire training process can be efficiently executed on a
single RTX 4090 GPU with 24 GB of memory.

4.2 Comparison to State-of-the-art Approaches

Quantitative comparisons. Following [8, 45], we report the average over
20 repeated generations with a 95% confidence interval. Table 1 presents
evaluations on the HumanML3D [10] and KIT-ML [33] datasets, respectively,
in comparison with state-of-the-art (SOTA) approaches.

In terms of improvement over the baseline, ANT demonstrates strong per-
formance, achieving substantial gains on metrics such as FID (HumanML3D:

0.071vs. 0.152; KIT-ML: 0.236 vs. 0.258) and R-Precision (Top-1 HumanML3D:

0.565 vs. 0.546; KIT-ML: 0.465 vs. 0.445). This indicates that ANT can sig-
nificantly enhance the performance of the baseline model. When compared
with SOTA VQ-based models such as MMM and MoMask, our method still
yields competitive results on HumanML3D and KIT-ML. Although our FID
is slightly higher than that of MoMask, our R-Precision surpasses all existing
SOTA models. It is worth noting that the baseline model we used performs

Method Average Time (s)
ANT (w/o DCFG) 0.949
Baseline method (w/o DCFG) 0.878
ANT (w DCFG) 0.741
Baseline method (w DCFG) 0.717

Table 3: Average Processing Times per 32-Batch (use T5 text
encoder).

significantly worse than SOTA methods like MMM. However, with our
proposed ANT enhancements, we achieve competitive results.

Qualitative comparison. Figure 5 shows the visual comparison be-
tween our model and other state-of-the-art methods under the same prompts.
For the prompt "A person flips to the left side,’ MDM, StableMoFusion, and
MoMask all produce incorrect motions, indicating a lack of semantic align-
ment. In contrast, our model generates natural and smooth motion that
accurately reflects the input text. For the more detailed prompt, "A person
walks calmly in irregular counterclockwise with their left arm raised to
chest-level", StableMoFusion and MDM incorrectly raises the arm, while
MoMask not only overlooks the meaning of "irregular” but also raises the
left arm higher than chest level. Our model successfully captures all the
fine-grained information and produces motion that remains faithful to the
prompt. Overall, the visualization results demonstrate that our approach
outperforms baselines and other models in terms of semantic accuracy,
motion fluency, and attention to detail.

ANT Boosts Performance on Complex Text Descriptions. To eval-
uate our model’s performance on semantically rich text, we select prompts
from the HumanML3D test set that are longer than the average length and
contain at least two verbs or include adverbs within a single sentence. Table
4 reports the results before and after applying ANT. As shown, ANT signifi-
cantly improves all metrics on long and fine-grained prompts compared to
the baseline. This demonstrates the strong advantages of our model in text
comprehension, fine-grained motion generation, and handling long textual
inputs.
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Figure 6: Comparative performance of ANT (StableMoFusion)

versus other baseline methods based on human evaluation.

The left panel depicts the accuracy achieved during manual
assessments. The right panel illustrates the win rate when
compared against other baseline methods. vs.Baseline means
against original StableMoFusion.

Plug-and-Play Architecture. We validate the effectiveness of ANT not
only on the StableMoFusion (DPM-Solver) but also on the MDM (DDIM).
The results are shown in Table 1. ANT (MDM) achieves significant im-
provements over the baseline in both FID and R-Precision (FID: 0.377 vs.
0.544; Top-1: 0.456 vs. 0.320). These results confirm the adaptability of our
method to different diffusion architectures and demonstrate its potential as
a practical enhancement for diffusion-based text-to-motion models.

Efficiency. In table 3, we compare the efficiency of two our methods and
baseline methods under the same text encoder and batch conditions. Our
approach (ANT) shows a relatively significant performance improvement
over the baseline, given the relatively small overhead of its implementa-
tion. Furthermore, based on insights gained from the ANT method, we
applied unconditional generation at a later stage to improve efficiency, as
indicated by the comparison between ANT and baseline method with ef-
ficiency sampling. Under conditions of limited performance degradation,
this approach provides a significant enhancement, representing a favorable
trade-off between efficiency and performance. In summary, the experimen-
tal results confirm that the ANT-based method is effective for achieving
notable performance gains with minimal additional overhead, making it
a viable solution for applications demanding both high performance and
efficiency.

Human Evaluation. We randomly selected 100 text descriptions from
the HumanML3D test set and invited 20 participants to subjectively evaluate
the motion sequences generated by four models: ANT (StableMoFusion),
StableMoFusion, MoMask, and MMM. The participants, unaware of the
model names, were asked to rate whether the generated motions were se-
mantically accurate, providing a "yes" or "no" response. We then calculated
the average accuracy of motion generation for each model. Additionally,
in the Pairwise Preference task, for each text description, we presented
the results from ANT and one of the other three models (StableMoFusion,
MoMask, or MMM), and asked the participants to choose the more natural
and coherent motion from the two options. Each model pair was evaluated
100 times, resulting in a total of 300 binary comparisons. The Figure 6 shows
that ANT leads in motion accuracy, achieving 83.2%. In terms of subjective
preference, ANT also consistently outperformed the other models, secur-
ing an average preference rate of 81.3%. ANT demonstrated significantly
stronger semantic understanding and superior motion generation quality.

4.3 Ablation Study

Analysis of Architectural Contributions. As shown in Table 1, we vali-
date the effectiveness of STA. The improvement brought by STA alone over
StableMoFusion has been discussed in Section 4.2. In Table 3, the sampling
time for a single batch is reduced from 0.949s to 0.741s when using DCFG.

Wenshuo Chen et al.

Method FID Top1 Top2 Top3 MultiModality
GT 0.015%0008 0 46430006 () 661*0-005  757+0.005 -
StableMoFusion ~ 1.316%0:040  .394%0-002 ¢ 576%0.004 ¢ g*0-003 1.873%0:052
ANT 0.372i0.017 0.505i0.009 0_700i0A006 0}794t0.007 2.009i0.066

Table 4: Experimental results for fine-grained generation of
ANT. All values are reported as mean and + indicates a 95%
confidence interval.

Method FID Top1 Top2 Top3
Baseline 0.152%0-004 0 546%0-002 (9 749%0.002 () g35+0.002
Resampler  0.101%0:904  ,563%0:003 ¢ 756+0-003  ( g44+0.002

Abstractor  0.0710-00¢  0.565%0-006  ( 756+0-003 () g43+0-002
Table 5: Experimental results for different architecture of
STA. All values are reported as mean and + indicates a 95%
confidence interval.

This results in a 21.9% increase in efficiency, with almost no loss in accuracy.
This demonstrates the effectiveness of the DCFG when integrated into the
STA architecture.

We also observe that applying DCFG directly to the baseline does not

work. The baseline fails to distinguish between the early and late stages of
the denoising process (Figure 4, due to its lack of temporal text awareness.
This comparison further shows that the ANT architecture can effectively
leverage the denoising prior in diffusion to improve prediction quality.
Text Encoder. In Table 2, we investigate the impact of applying ANT to var-
ious text encoders. We observe consistent performance improvements when
using T5 [36], BERT [7], and MoCLIP. In contrast, models based on CLIP
and LongCLIP [44] show performance degradation. This discrepancy can be
attributed to the varying capacities of these models to capture fine-grained
textual information. Large-scale encoders such as BERT and T5 benefit from
rich pretraining, enabling them to generate detailed text representations.
These representations facilitate dynamic modulation across time steps and
support hierarchical, nuanced semantic understanding. On the other hand,
CLIP and LongCLIP tend to produce coarser textual features, which often
leads to semantic misalignment during dynamic processing. In contrast,
MoCLIP demonstrates stronger alignment with motion semantics, as it has
been fine-tuned on motion-specific datasets. This makes it more suitable
for tasks that require precise and temporally coherent semantic modulation.
Based on these findings, we adopt T5 as the text encoder in our work, as it
delivers the strongest overall performance.
STA Architecture. In Table 5, we explore two different architectures for
the STA module. We conduct experiments on StableMoFusion and evaluate
performance using FID and R-Precision. Both STA architectures demon-
strate significant improvements over the baseline across all metrics while
achieving comparable results in semantic alignment (R-Precision). Notably,
Abstractor [41] outperforms Resampler [1] in terms of FID (0.071 vs. 0.101).
Therefore, we adopt Abstractor in this work as the method for integrating
semantic features and temporal steps.

5 Conclusion

In this paper, we design semantic temporal-aware methods for both the
training (STA) and inference (DCFG) stages, based on the unique denoising
mechanism of diffusion. Our method provides plug-and-play functionality,
achieving more precise semantic alignment and more efficient sampling,
demonstrating the potential of diffusion-based methods in T2M.
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A Spectral Analysis of the Diffusion Process

We analyze the spectral properties of the signal during the diffusion process,
focusing on how noise affects different frequency components over time.

A.1 Power Spectral Density Evolution
Consider the forward diffusion process described by the stochastic differen-
tial equation (SDE), simplified by assuming zero drift (f (m;, ) = 0):

dm; = g(t)dwy, (15)

where g(t) is the diffusion coefficient and w; is a standard Wiener process.
The solution integrates to:

t
m; =mgy+ €, where € :/ g(s)dws. (16)
0

Here, my is the initial clean signal and €; represents the accumulated
noise up to time £.

THEOREM A.1 (POWER SPECTRAL DENSITY IN SIMPLIFIED DIFFUSION). For
the process defined by Eq. (15), the power spectral density (PSD) S, (w) of
the signal m; at time t is given by:

t
Sm (@) = (@) + [ (51, (7
0
where thg (w) is the Fourier transform of the initial signal my.

PRrooF SKETCH. Applying the Fourier transform ¥ to Eq. (16), we get:
1y (0) = Flme](0) = g (w) + & (). (18)
The PSD is defined as Sm, (@) = E[|ti; (w)|?]. Substituting the above:

Sm (@) = E[ g () + & (o) ?]
= E[lrho (@) |? + 2 Rethy (@) é; () + [& (@) P] . (19)

Assuming the initial signal my is deterministic or independent of the
subsequent noise €;, and noting that E[ &, («) | = 0, the cross-term vanishes:
E[y(w)é;(w)] = 1y (w)E[é(w)] = 0. The expected energy of the
noise in the frequency domain is a standard result from the properties of
It6 integrals (related to the autocorrelation of the Wiener process):

t
Bl1&()]?] = /0 #(s)ds. (20)

This noise energy term is independent of frequency w, characteristic
of white noise accumulation in the frequency domain. Combining these
results yields Eq. (17). m}

A.2 Frequency-Dependent Dynamics in Motion
Generation

The result from Theorem A.1 helps elucidate the spectral dynamics during
diffusion-based motion generation. Natural motion signals my typically
exhibit a low-pass characteristic, meaning their power spectral density
(PSD) decays with frequency: |ty (w)|? o |ew|* for some a > 0.

Signal-to-Noise Ratio (SNR). During the forward diffusion process,
the signal-to-noise ratio (SNR) at frequency w and time ¢ is defined as:
- 2
SR, 1) = 0@
/0 g%(s) ds
where g(t) denotes the noise schedule. For a given SNR threshold y > 0,
we define t;, () as the earliest time at which the SNR at frequency « drops

(21)
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toy:
(@) i
SNR(w, [y(w)) =y = .Aty gZ(s) ds = M (22)

C. Assume the noise schedule is constant, i.e., g(¢) = o for some o > 0.
Then ¢°(s) = 2 and the integral simplifies to:

ty (w)
/ o’ds = Uzt},(w). (23)
0
Substituting into Equation (22) gives:
[1i1 () |* |1 () |*
crzty(w) =— = fl@)=—7H—. (24)
Y yo

Using the assumption |y (w)|?> = K|w|™* for some constant K > 0,
we obtain:

ty () = %mr“, (25)

Interpretation. Equation (25) reveals several key properties: As the
frequency w increases, the corresponding time ¢, (w) at which the signal-
to-noise ratio (SNR) reaches the threshold y decreases. This implies that
high-frequency components (wpy) hit the SNR threshold earlier and thus
become corrupted by noise sooner during the forward diffusion process.
In contrast, low-frequency components (wr ) maintain a higher SNR for a
longer period, allowing their structural information to be preserved deeper
into the diffusion process.

Forward Process (Corruption). Astime ¢ increases, the noise energy /Ot g%(s) ds
accumulates, decreasing the SNR across all frequencies. Since high-frequency
components exhibit lower spectral energy |y (w)|?, they reach the SNR
threshold y sooner, implying that fine-grained motion details are lost earlier
during forward diffusion.

Reverse Process (Generation/Denoising). The reverse process begins at a
high-noise state (large ¢), where low SNR conditions prevail. During denois-
ing, the model first reconstructs low-frequency components, which retain
relatively higher SNR and thus guide the recovery of the coarse semantic
structure. As time decreases, the effective noise level drops and the SNR
improves across all frequencies, allowing the model to progressively refine
the motion with higher-frequency details.

This analysis substantiates prior empirical findings [18] that diffusion
models tend to generate coarse, low-frequency structure early in the reverse
process, followed by high-frequency refinements as the process evolves.

B More Visualization Comparison

Figure 7 shows the visualization results of ANT and other SOTA models.
As can be seen from various examples, ANT outperforms other models in
both naturalness and semantic alignment.

C DETAILS OF HUMAN EVALUATION

We utilize the Google Form platform to allow 20 individuals to separately
fill out 100 different motion sequences pairs for testing, where we have
designed two types of questions. The first type involves directly rating the
semantic accuracy of generated motion. Motion is presented in GIF format,
accompanied by two evaluation options: yes or no. The second type of
question pertains to user preferences between our model and a baseline
model. This question aims to obtain a comparison of our method and the
original method from the user’s perspective regarding motion generation
accuracy. Our questionnaire takes the form C:
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min \ max 2.5 3.0 3.5 4.0 4.5
0.5 0.5536/0.1034 | 0.5552/0.0979 | 0.5511/0.0975 | 0.5490/0.0954 | 0.5553/0.0924
1.0 0.5502/0.0945 | 0.5546/0.0994 | 0.5578/0.0967 | 0.5562/0.0960 | 0.5509/0.1003
15 0.5544/0.0974 | 0.5623/0.0975 | 0.5550/0.0993 | 0.5529/0.0996 | 0.5600/0.0926
2.0 0.5528/0.1033 | 0.5494/0.0954 | 0.5575/0.0979 | 0.5535/0.0931 | 0.5498/0.0936
2.5 0.5566/0.0975 | 0.5613/0.0992 | 0.5517/0.0984 | 0.5513/0.0943 | 0.5549/0.0962

Table 6: Performance Metrics (Top1/FID) organized in a grid
with hyperparameter wy,j, value as rows and hyperparameter
wmax values as columns (best Top1 highlighted)

Example 1: A man takes a big jump forward.

StableMoFusion MoMask

Example 2 : A person walks down stairs while
holding onto the railing with his right hand.

StableMoFusion MoMask

Example 3 : A person walks forward taking very wide steps left and right.

ANT (StableMoFusion)

StableMoFusion MoMask

Figure 7: Our ANT can be seamlessly plugged into diffusion-
based text-to-motion models to generate semantically rich,
fine-grained, and naturally smooth motions with high preci-
sion

N
[Question1]: Is <motion1.gif> semantically accurate?

(1) Yes

(2) No
[Question2]: Is <motion2.gif> semantically accurate?

(1) Yes

(2) No
[Question2]: Which motion result do you think is generated
better?

(1) The first one

(2) The second one
. J

D Discussion of Evaluation Metrics

Previous work has primarily focused on two metrics: FID and R-Precision.
FID measures the distance between distributions based on a normality
assumption, thereby evaluating the generation quality. However, previous
studies [4, 27] have shown that an extremely low FID often contradicts
human subjective preferences and is no longer reliable. Considering that
the current FID for text-to-motion tasks is already much lower than the
average level of text-to-image (T2I) tasks, in this paper, FID is regarded as
the second most important reference metric, after R-Precision.

E Pseudo-code
Algorithm 1 shows ANT’s Pseudo-code

Wenshuo Chen et al.

F Hyperparameter search result

In our study, we conducted a grid search on the validation set to deter-
mine the most appropriate values for the hyperparameters wmin and wmax.
Specifically, we selected five candidate values for each of wmin and wmax,
resulting in a total of 25 distinct parameter combinations. These five groups
of hyperparameters were chosen by extending the conventional ranges used
in previous studies, allowing us to explore a broader spectrum of possible
values. For each combination, we performed tests five times to improve the

reliability and statistical significance of our observations.
After completing our grid search methodology, we first analyzed the

relationship between the FID and top-k metrics over various hyperparame-
ter configurations. At higher ranges of the parameters, we observed some
level of inverse relationship between FID and top-k accuracy. Specifically,
settings that yielded lower FID scores tended to correspond with reduced
top-k performance, and vice versa. Furthermore, our analysis revealed that,
for most of the hyperparameter values (except for the extremely high or
low extremes), the overall impact on the results is not significantly sensitive.
This insensitivity in the mid-range values suggests that our method demon-
strates robustness with respect to these hyperparameter variations. Based
on these observations, we carefully selected our hyperparameter to achieve
an optimal balance between FID and top-k performance. Our final choice
reflects a compromise that leverages the robust region of the parameter
space while mitigating the adverse effects observed at the extremes.

Algorithm 1 ANT Diffusion Process for Text-to-Motion Genera-
tion

Require: o Text prompt 7~

text encoder (e.g., T5 or CLIP) Encoder

Diffusion denoising network Gg

Diffusion timesteps T with noise schedule {ozt}{=1

Guidance parameters: wmax, @min, decay function ¢ (#), thresh-
old time #y,

Ensure: Generated motion sequence xo

1: Initialization:
2: ¢ « Encoder(7) {Compute text embedding}
3: xy ~ N(0,I) {Sample initial noise}

4: fort =T to 1 by —1 do
5:  Compute Timestep-Specific Features:
6: ¢t < STA(c,t) {Fuse text embedding e with temporal informa-
tion}
7:  Denoising Predictions:
8  €cond < Go(xz,t,¢;) {Conditional prediction}
9:  €uncond < Go(x£,1,0) {Unconditional prediction}
10:  Adaptive Guidance Scale:
11:  Compute @; = Omin + P(¢) * (Omax — ©Omin)
schedule}

12:  Guidance and Update:
13: if ¢ > ty, then

{e.g., using a cosine

14: € < €uncond  {Late stage: use unconditional branch only}
15:  else

16: € < €uncond + W * (€cond — €uncond)

17:  endif

18:  Update x;—1 using the diffusion sampler (e.g., DPM-Solver++):
x¢-1 < Update(xy, €, t)
19: end for

20: return x
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a person that turns around and runs and skates turns around and then does a cartwheel

ai
skate
tums.
and
then
does
</s>

around
around

wheel

_person

Figure 8: Visualization of attention scores for a sample
prompt across diffusion timesteps. The y-axis represents
the timestep ¢ from 999 (early, high-noise stage) down to 0
(late, low-noise stage). The x-axis shows the tokens of the
input text. Darker shades of red indicate higher attention
scores, signifying stronger focus from the model.

G Deeper Analysis of the STA Module’s Internal
Behavior

To provide a deeper, empirical validation of our proposed Semantic Tempo-
rally Adaptive (STA) module, this section delves into its internal working
dynamics. We aim to visually substantiate our core hypothesis: the STA
module facilitates a two-stage denoising process by dynamically modulat-
ing the influence of textual semantics over the diffusion timestep ¢ . We
present two complementary pieces of evidence: (1) the temporal dynamics
of semantic attention within the cross-attention layers, and (2) the evolution
of the AdaLayerNorm modulation parameters that control the strength of
semantic injection.

G.1 Temporal Attention Dynamics

To understand what semantic information the model prioritizes at different

stages, we visualize the cross-attention scores between the motion features

and the input text tokens across the denoising timesteps. As illustrated in

Figure 8, we analyze the attention patterns for the prompt: “a person that

turns around and runs and skates turns around and then does a cartwheel”
Our analysis reveals a distinct two-stage behavior:

o Early Stage (Semantic Planning): During the initial phase of
denoising (e.g., for ¢ > 700), the model’s attention is strongly con-
centrated on key tokens that define the motion’s high-level struc-
ture and core actions. For instance, the words runs, skates, and
cartwheel receive substantial attention. This observation aligns
perfectly with our concept of a "low-frequency semantic planning"
phase, where the model establishes the foundational blueprint of
the motion sequence based on global textual cues.

Late Stage (Detail Refinement): As the denoising process pro-
gresses into its later stages (e.g., ¢ < 500), the attention paid to these
high-level semantic tokens rapidly decays, with the heatmap be-
coming significantly lighter. This indicates a functional shift. Once
the core motion structure is established, the model reduces its re-
liance on explicit semantic guidance and transitions to the "high-

frequency detail refinement" phase, where it focuses on generating
natural, smooth, and coherent transitions between the established

keyframes.
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G.2 Modulation Strength via AdaLayerNorm
Parameters

To provide a more mechanistic understanding of how the STA module
controls semantic influence, we analyze the behavior of its core compo-
nents. The AdaLayerNorm layer modulates motion features using a time-
dependent scale parameter (@) and shift parameter (f), which are derived
from the textual condition. The magnitudes of these parameters directly
govern the strength of semantic conditioning.

Figure 9 illustrates the evolution of the mean « and f values across all
denoising timesteps.

AdalayerNorm Scale vs. Timestep

0050

0025

0000

0025

Mean scale Value

—0.050

0075

0100

AdalayerNorm Shift vs. Timestep
. - Mean shift

0002 T

0003

~0.004 %

0.005

0,006

Mean shift Value

—0.007
~0.008

0,009 e v

1000 800 600 00 200 o
Diffusion Timestep (1)

Figure 9: Evolution of the mean scale (¢, top) and shift (5,
bottom) parameters of the AdaLayerNorm layer within the
STA module. The parameters are plotted against the diffusion
timestep t. The decreasing trend in their values indicates a
systematic weakening of semantic modulation strength.

The plots show a clear and systematic decrease in the values of both
o and S as the timestep ¢ decreases from 1000 to 0. This provides direct
quantitative evidence that the STA module programmatically and gracefully
weakens the influence of textual semantics as the denoising process unfolds.
This behavior is the explicit mechanism behind the "temporal-semantic
reweighting” central to our work. It ensures that semantic guidance is
strongest when needed for structural planning in the early stages and is
attenuated during the later stages to allow for fine-grained, naturalistic
motion refinement.

G.3 Synthesis

In summary, these two analyses offer a multi-faceted and cohesive view
of the STA module’s internal dynamics. The attention heatmap (Figure 8)
reveals what the model focuses on, demonstrating a shift from high-level
concepts to implicit details. Concurrently, the AdaLayerNorm parameter
plots (Figure 9) reveal how strongly this focus is applied, showing a pro-
grammed decay in semantic modulation strength. Together, they provide
compelling empirical validation that our STA module successfully imple-
ments the intended adaptive, two-stage semantic injection, which is a key
contributor to the superior performance and semantic alignment achieved
by the ANT model.
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Method Venue FID | R-Precision T Diversity — Multimodality T
Top1 Top2 Top3

Real 0.006%0003  .335+0-004 ¢ 573+0.005 6g+0.002 10 gg+0-102 -
MLD [5] CVPR 2023 0.628+0:038  0.293+0-004  ( 459*0-003 568+0.004 g 747%0.09 3.035+0-138
T2M [10] CVPR 2022 1.898*0:05%  0.252+0-006  0.406*0-005  .508%0-00¢ g 975*0-113 4.470*0-112
MoMask [8] CVPR 2024 0.383*0-018 3010005 481*0.004 59740005 9 6g9*0.092 1.968%0-049
T2M-GPT [45] CVPR 2023 0.177£0-016 3530005 545%0.006 ¢ 663+0.005 10 128+0-132 1.798*0-:041
MotionGPT [22] CVPR 2023 0.267%0-017  (.306+0-004 (. 486%0-006  ( g05+0-006 g 357+0.133 2.210%0-137
MMM [32] CVPR 2024 0.151%0-013 (. 353+0.004 () 545+0.004 () 667+0.005 10 91+0-086 0.757%0-042
MDM [40] ICLR 2023 9.467%0-217 (0, 049%0-003  ( 09g*0-005 () 148+0-005 7 0g*0.100 5.682+0-203
StableMoFusion [20] ACM MM 2024  0.460%0:003 0 312%0:004  ( 494%0.004 g 6070.005 g 546+0.079 2.157+0.044
ANT (StableMoFusion) - 0.149*0-011 0 347%0.005  ( 541+0.005 () 666+0-006 10 (34%0-065 2.094+0-059

Table 7: Evaluation metrics for CMP dataset. + indicates a 95% confidence interval. Red and Blue indicate the best and the
second best result. The right arrow — means the closer to real motion the better. Red and Blue indicate the best and the second

best result.

H More Comparison Experiments

To further validate the robustness and generalizability of our proposed
ANT model, we provide additional comparison experiments on the Combat
Motion Processed (CMP) dataset. This dataset features a distinct motion
style compared to the more general HumanML3D and KIT benchmarks,
serving as a challenging test case for text-to-motion generation.

CMP Dataset. The Combat Motion Processed (CMP) dataset [? ] is a
benchmark with a combat motion style that includes 8,700 motions and
26,100 text descriptions. It serves as a smaller-scale but more challenging
evaluation benchmark for text-to-motion models. For our experiments on
this dataset, we employ the same setup used for the main benchmarks:
the pose representation follows StableMoFusion, motions are augmented
through mirroring, and the data is split into training, validation, and testing
sets with a ratio of 0.8 : 0.15 : 0.05.

Results on CMP. Table 7 presents the quantitative results on the CMP
dataset. As shown, our ANT model significantly outperforms the baseline
(StableMoFusion) across all key metrics, including FID and R-Precision. This
demonstrates the effectiveness of our adaptive temporal-aware architecture
in a specialized and challenging domain. Furthermore, ANT achieves com-
petitive or superior performance when compared to other state-of-the-art
methods, highlighting the strong generalizability of our proposed approach

beyond common human actions. These results on the CMP dataset fur-
ther validate that ANT provides a robust and effective enhancement for
diffusion-based text-to-motion models.

I Evaluation Metrics

e Frechet Inception Distance (FID): We can evaluate the overall motion
quality by measuring the distributional difference between the high-level
features of the motions.

e R-Precision: We rank Euclidean distances between a given motion se-

quence and 32 text descriptions (1 ground-truth and 31 randomly selected

mismatched descriptions). We report Top-1, Top-2, and Top-3 accuracy
of motion-to-text retrieval.

Diversity: From a set of motions, we randomly sample 300 pairs and com-

pute the average Euclidean distances between them to measure motion

diversity.

Multimodality: For one text description, we generate 20 motion se-

quences forming 10 pairs of motion. We then extract motion features and

compute the average Euclidean distances of the pairs. We finally report

the average over all the text descriptions.
e Multimodal Distance (MM-Dist). The average Euclidean distances

between each text feature and the generated motion feature from this
text.
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