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Motivation and key ideas

e Real-world visual data rarely presents as isolated, static instances. Instead, it often evolves gradually over time through variations in pose,
lighting, object state, or scene context. However, conventional classifiers are typically trained under the assumption of temporal independence,
limiting their ability to capture such dynamics.

o We ask: Can standard feedforward classifiers reason over time without modifying their architecture, simply through rethinking how we supervise them?.

The pipeline: further details

Overview of our framework. (a) Temporally smooth sequences are generated via time-indexed transformations .A; (or sourced from natural videos) and
processed by a frozen, image-pretrained vision transformer to extract frame-wise features. A lightweight temporal classifier is then trained to produce
feature trajectories. (b) These trajectories are optimized using a multi-term objective with the Support-Exemplar-Query (SEQ) learning framework to (1)
align with class-specific prototype trajectories that capture typical temporal patterns (violet block), (i1) achieve accurate classification through semantic
supervision (vivid green block), and (ii1) ensure smooth and consistent temporal evolution (gray brown block).
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(b) The unified multi-term objective.
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(a) Capturing evolving feature trajectories.

(Left) Examples from Flowers-102, SoyAging, Stanford Dogs, and Cars show how augmentations create temporal variations from one image. The first
column shows originals (green); others apply augmentations by color: flip (red), zoom (blue), rotation (purple), color jitter (orange), shear (brown),
translation (pink), blur (gray), and cutout (cyan), enriching the feature space with varied appearances.

(Right) SEQ models class-consistent temporal dynamics by constructing a support set of sequences to form a class-specitic exemplar that captures typical
prediction trajectories over time. A guery sequence is then aligned against this exemplar to enforce temporal consistency and reveal deviations from
expected class behavior.
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Results

Visualization of selected FC weight regions shows a clear comparison between the baseline (left) and our temporal modeling (right). Temporal modeling
yields stronger, more distinct patterns, enhancing feature discrimination.
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Flowers-102 SoyAging

Anomaly prediction comparison. Grey regions indicate ground-truth anomalies. Blue and red curves show the baseline and our method. Our approach
detects anomalies more accurately and earlier, with scores crossing the 0.5 threshold in closer alignment with the ground truth.
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