

Feature Hallucination for Self-supervised Action Recognition

Learning robust multi-modal representations from incomplete data

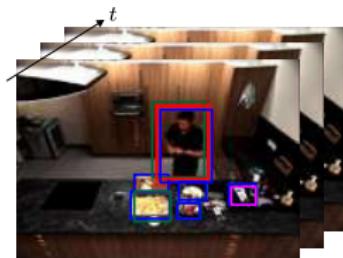
Lei Wang^{1,2} Piotr Koniusz^{2,3,4,1}

¹Griffith University ²Data61/CSIRO ³UNSW ⁴ANU

January 22, 2026

Australian
National
University

The Core AI Problem & Why Existing Methods Fall Short


- **Real-world AI is multimodal:** vision, motion, audio, skeletons, etc.
- **Complete data is rare**
 - Sensors fail
 - Modalities are missing or misaligned in time
 - Data quality varies
- **Expectation remains high:** generalize, reason, support decisions

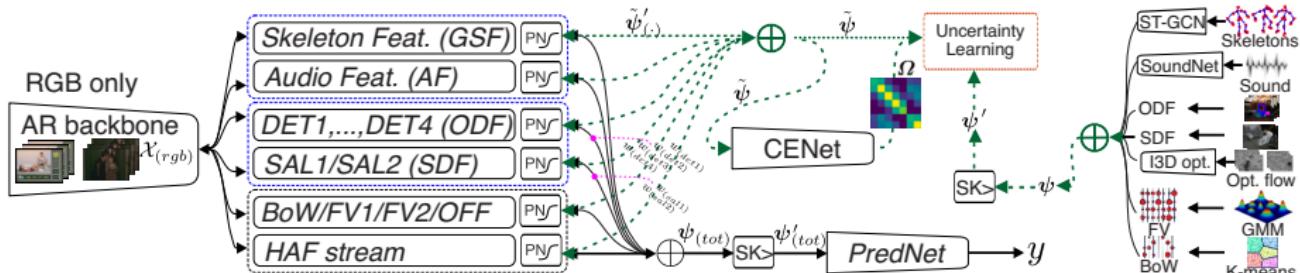
How can AI learn robust representations when parts of the world are missing?

- Hidden assumption: all modalities are available – even at inference
- Common workarounds:
 - Drop samples
 - Fill missing modalities with averages/defaults
 - Hand-crafted heuristics
- **Two critical issues:**
 - Hallucinated features are treated as reliable (uncertainty ignored)
 - Motion, one of the strongest self-supervised signals, is under-exploited

Outcome: hallucination without trust → fragile representations

The One-Sentence Idea & A General AI Design Principle

Hallucination is useful only when a model knows how much it should trust what it hallucinates.


A General AI Design Principle: Hallucinate missing data within uncertainty, and anchor learning in reliable self-supervised signals (e.g., motion).

Therefore, hallucination should be:

- Explicitly uncertainty-aware
- Grounded in reliable self-supervised signals (e.g., motion)

This principle applies **beyond computer vision and multimodal learning**

Framework Overview & Hallucination with Uncertainty

Unified multimodal self-supervised framework

- During **training**: Train with full modalities \rightarrow learn cross-modal prediction
- During **testing**:
 - **Hallucinate missing modalities** when data is incomplete
 - **Estimate aleatoric uncertainty** for hallucinated features
 - **Use motion-aware descriptors** to stabilize learning
- **Practical advantages**:
 - Compatible with multiple backbones
 - Scales to large datasets

Uncertainty is used to:

- Down-weight unreliable hallucinations
- Stabilize representation learning

Why Motion Matters & What Breaks Without Our Ideas

Why Motion Matters

- Motion encodes what appearance cannot: structure, dynamics, and temporal consistency
- Remains informative even when **visual cues are weak or missing**

Motion as a Self-Supervised Anchor

- Improves **fine-grained recognition**
- Strengthens **cross-modal alignment**
- **Generalizes across domains**

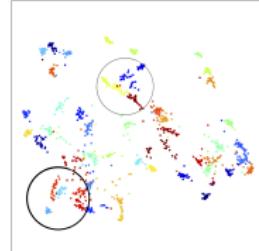
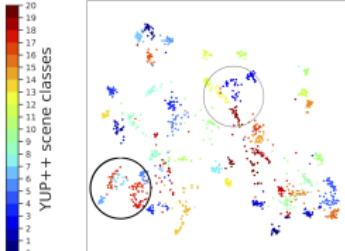
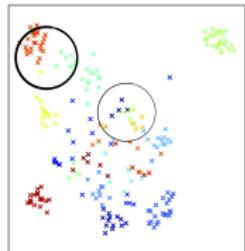
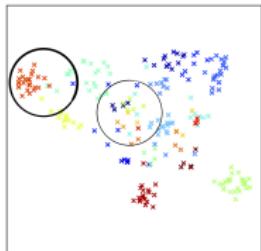
Motion acts as a **reliable bridge between modalities**

	Without uncertainty	With uncertainty
Hallucination behavior	Blind trust	Confidence-weighted
System outcome	Failure	Graceful degradation

This gap is **critical for real-world deployment**, especially in autonomous and embodied systems

Scalability and Generality & Why This Belongs at AAAI

Framework Properties:





- Modality-agnostic; tested on action recognition
- Works with multiple architectures
- Scales to large datasets
- Does not require all modalities at inference (“one common modality for all”)

Why Fits AAAI:

- Addresses a core AI challenge: robust representation learning from incomplete, heterogeneous data
- Contributions:
 - Representation learning
 - Multimodal reasoning
 - Embodied and autonomous AI
- Potential applications: robotics, HCI, sports analytics, surveillance

This is not an action recognition trick, it is a principle for learning under partial observability.

Key Takeaways & Closing

- Missing data is unavoidable in real AI systems
- Hallucination can help, when it is uncertainty-aware.
- Motion is a powerful **self-supervised signal**
- Combining these ideas leads to more **robust and generalizable AI**

Thank you!