Feature Hallucination for Self-supervised Action Recognition
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Motivation and key ideas
(Left) Bounding boxes from four detectors; (Middle) saliency detectors highlighting spatial and motion regions; (Right) feature hallucination quality.
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(a) BoW FC (train)

(¢) FV1 FC (train) (d) FV2 FC (train)
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The pipeline: further details
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A conceptual overview of our multimodal self-supervised action recognition framework
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Stream details.
(Left) Top four subfigures show the architectures used for the BoW, FV, OFF, HAF, ODF, SDF, GSF, and AF streams with four different backbones; the

bottom subfigure shows the PredNet architecture. (Right) Evaluation of Power Normalization and sketching on HMDB-51 (split 1).

Results

(Left) Impact of 8 in the weighted mean on classification performance. Results on HMDB-51 and YUP++: (top) four combined detectors + SVM,;
(bottom) DEEP-HAL with four combined detectors + SVM. (Right) Evaluation of ODF with SVM using the weighted mean across four detectors.
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Visualization of the feature space (extracted from PredNet) for DEEP-HAL and DEEP-HAL+ODF on (Left) YUP++ and (Right) HMDB-51.
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