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MOTIVATION Sy '
e LoRA (Low-Rank Adaptation) is a popular Parameter-Efficient Fine-Tuning (PEFT) method by

introducing two low-rank matrices A and B while keeping the pre-trained weights frozen. : :
e LoRA’s update AW = BA lies in a subspace of full fine-tuning update. As a consequence, the fine- i [Htente " I
tuning performance of LoRA is suboptlmal 5 Weights . A L
e We propose Subspace Recomposition in Low-Rank Adaptation via Importance-Based Fusion and :
Reinitialization: ! WeR™™  BeR™  AcR™™
o |dentify unimportant components in LORA based on importance scores. % f
o Fuse unimportant LoRA weights back into pretrained weights. : .
o Reinitialize unimportant components using ‘unused’ principal components from SVD of
pretrained weights. ...Figure 1: LoRA (Hu et al,2027) .
METHOD 4 .,
Pretr.amed % %
Before Training: e N
e Perform Singular Value Decomposition (SVD) on the pretrained weights W,, and - S [T

initialize the LoRA matrices A and B with the PISSA method (Meng et al., 2024). ‘
Training Phase: At the end of each training interval,
e Compute the sensitivity-based importance score (Zhang et al., 2023). We deflne k
group importance score Sk for the k-th Components
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e Split the update AW = BA into two subsets based on their importance W € Rm™™ B ¢ R™ Aec R
Scores: :  Figure 3: Compute importance score. Darker orange

o B,, Aq: low-importance components -> fused back into frozen weights.
o B,, A,: high-importance components -> retained for continued tralnlng
e Fuse B,, A, into frozen weights.
e Reinitialize B,, A, using the ‘unused’ principal components from the SVD
of W, and subtract initialisation of B1A, from frozen weights. '
 Reset importance scores for the next training interval.
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e GLUE Benchmark Method Params/Total Params SST2 MRPC CoLA QNLI RTE STSB
. . LoRA 1.33M /184M 94.84 90.78 69.82 91.89 85.56 91.06
o A collection of natural language understanding tasks PiSSA 1.33M§184M 9495 91.50 71.58 93.36 84.84 90.62
o Tasks used: SST_Z, MRPC, COLA, QNLL RTE, STS-B SRLoRA 1.33M/184M 95.75 90.63 71.18 93.68 85.92 90.59
Task Name Moetric Task Description Table 3: Comparison of LoRA, PiSSA and SRLGE:,;AS 1::1 DeBERTa-v3-base fine-tuned on selected GLUE
SST-2 Accuracy Stanford Sentiment Treebank
MRPC F1 Microsoft Research Paraphrase Corpus
CoLA Matthews corr. Corpus of Linguistic Acceptability Method CIFAR100 STL10 MNIST
QNLI Accuracy Question Natural Language Inference
RTE Accuracy Recognizing Textual Entailment LoRA 90.06 99.62 98.89
STS-B Spearman corr. Semantic Textual Similarity Benchmark SRLoRA 92.51 99.54 94.83
Table 1: GLUE benchmark. Table 4: Comparison of LoRA and SRLoRA on ViT fine-tuned on CIFAR100, STL10 and MNIST.

o o oo . SRLoRA = LoRA = Pj|SSA
e Vision Classification Datasets

(V)]
o CIFAR-100 / STL-10 / MINIST 0.6 2
0.5
Dataset Type # Classes \
CIFAR-100 Object classification 100 0.4 |
STL-10 Semi-supervised classification 10 *
MNIST Handwritten digit classification 10 0.3
Table 2: Vision Classification Dataset. 0.2
0.1
DISCUSSICON AN ARNDI WAL ADAALRIA SR
e SRLORA enhances training efficiency by recomposing the 0 2k 4k 6k
update subspace, allowing the model to capture higher-rank Figure 6: Training loss curves on the RTE task. We fine-tune DeBERTa-v3-base using
iInformation and achieve faster convergence. the same hyperparameters for LORA, PiSSA, and SRLoRA. The results show that
e However, frequent recomposition during the stable phase SRLoRA achieves faster initial loss reduction compared to the other two methods.
may lead to underperformance. This suggests a potential References | | |
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