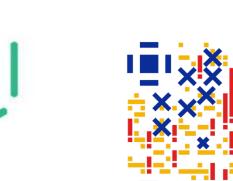


NEURAL INFORMATION Graph Your Own Prompt



Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao

Motivation

- Deep networks learn rich features, but these features often do not match semantic class structure.
- Samples predicted as the same class may still appear far apart in feature space, hurting generalization.

Confused in abstract space

Four legs? Hmm... A car? Or a horse?

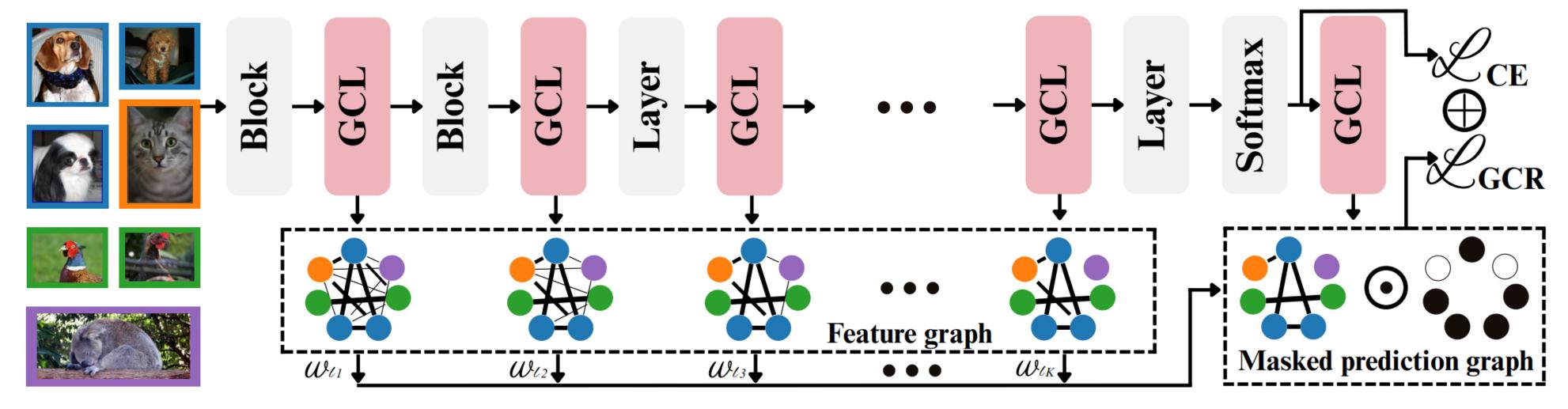
Results

Why not use your own predictions to refine and clean feature structure?

Strength

Model-agnostic Parameter-free Portable Lightweight

MAE



Self-prompting: The model learns from its own outputs, reinforcing semantic structure

Method

We use cosine similarity with non-negative values:

$$F_{ii}^{(I)} = \text{ReLU}(\cos(\mathbf{x}_i^{(I)}, \mathbf{x}_i^{(I)})), \quad i, j = 1, \dots, n.$$
 (1)

• From the prediction logits $Z = [z_1^\top, \dots, z_n^\top]^\top$ of the same batch:

- apply softmax to obtain class probability vectors $p_i = softmax(z_i)$,
- compute pairwise cosine similarity between prediction vectors:

$$S_{ij} = \text{ReLU}(\cos(p_i, p_j)). \tag{2}$$

To focus on reliable semantic relations, we build a binary mask $\mathsf{M} \in \{0,1\}^{n \times n}$:

$$M_{ij} = \begin{cases} 1, & \text{if } y_i = y_j, \\ 0, & \text{otherwise.} \end{cases}$$
 (3)

The masked prediction graph $P \in \mathbb{R}^{n \times n}$ is then

$$P_{ij} = M_{ij} \odot S_{ij}, \tag{4}$$

where o denotes elementwise multiplication.

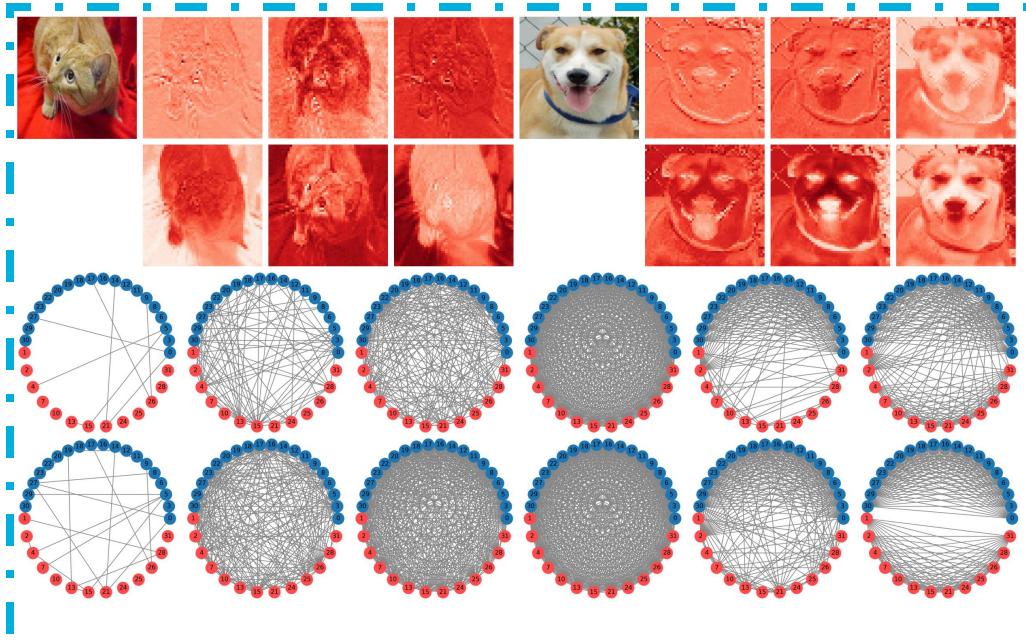
The layer-wise graph consistency loss is

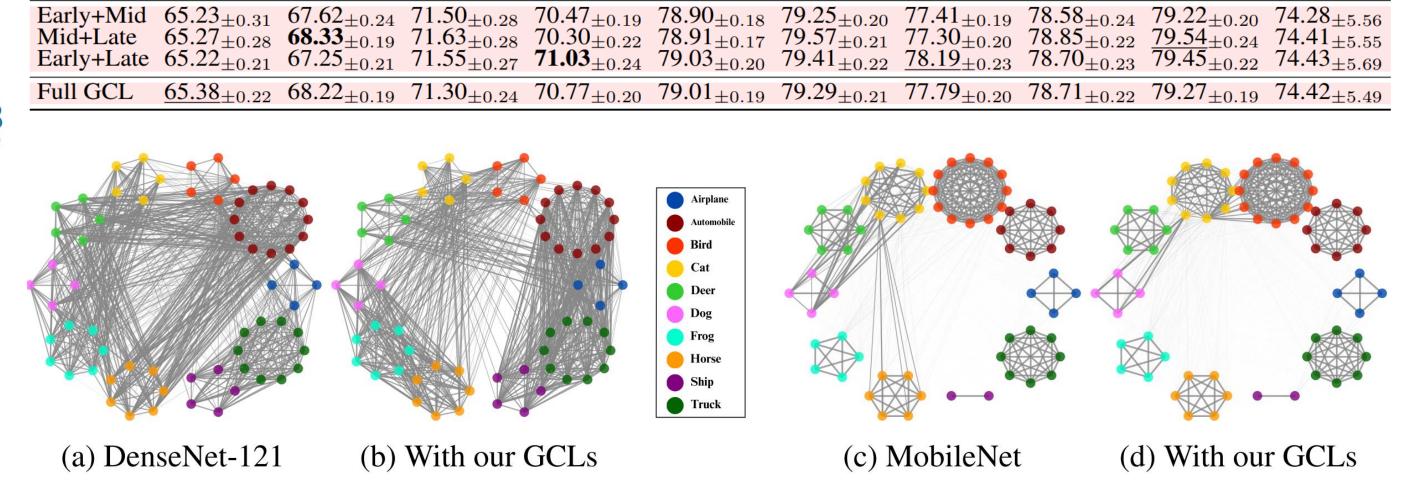
$$\mathcal{L}_{GCR}^{(I)} = \left\| \operatorname{triu}(\mathsf{F}^{(I)}) - \operatorname{triu}(\mathsf{P}) \right\|_{F}^{2}. \tag{5}$$

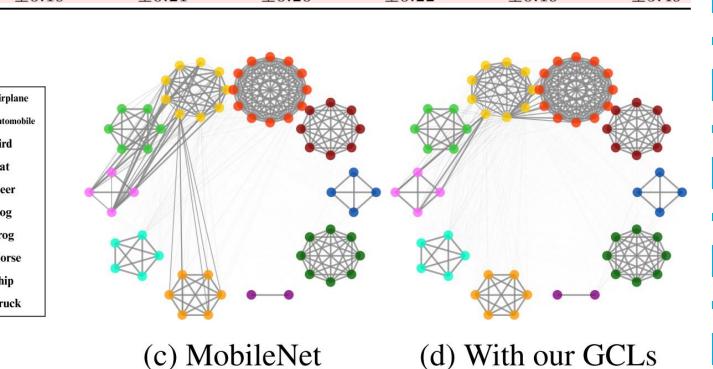
For a set of layers $\{1, \ldots, K\}$, compute a graph consistency loss at each layer and combine them:

$$\mathcal{L}_{GCR} = \sum_{l=1}^{K} w_l \left\| \operatorname{triu}(\mathsf{F}^{(l)}) - \operatorname{triu}(\mathsf{P}) \right\|_F^2, \tag{6}$$

 $\mathcal{L}_{total} = \mathcal{L}_{CE} + \lambda \, \mathcal{L}_{GCR}$







The relational graphs show that adding GCLs yields cleaner, tighter class clusters with fewer cross-class links, reducing feature noise and aligning features with semantic predictions

Baseline $88.95_{\pm 0.33}$ $90.23_{\pm 0.25}$ $91.21_{\pm 0.28}$ $92.30_{\pm 0.25}$ $94.10_{\pm 0.26}$ $94.57_{\pm 0.29}$ $95.12_{\pm 0.30}$ $94.83_{\pm 0.25}$ $95.03_{\pm 0.28}$ $95.22_{\pm 0.31}$ $95.01_{\pm 0.27}$ $93.32_{\pm 2.26}$

Early GCL Mid GCL And GCL Late GCL $89.42_{\pm 0.25}$ $91.17_{\pm 0.22}$ $92.33_{\pm 0.33}$ $92.59_{\pm 0.21}$ $94.89_{\pm 0.23}$ $95.48_{\pm 0.22}$ $95.48_{\pm 0.23}$ $95.55_{\pm 0.18}$ $95.57_{\pm 0.23}$ $95.57_{\pm 0.23}$ $95.39_{\pm 0.26}$ $95.51_{\pm 0.17}$ $93.98_{\pm 2.22}$ $95.69_{\pm 0.23}$ $95.70_{\pm 0.29}$ $91.40_{\pm 0.19}$ $92.36_{\pm 0.21}$ $92.80_{\pm 0.19}$ $94.88_{\pm 0.19}$ $95.35_{\pm 0.28}$ $95.71_{\pm 0.26}$ $95.69_{\pm 0.23}$ $95.69_{\pm 0.23}$ $95.51_{\pm 0.24}$ $95.51_{\pm 0.24}$ $95.51_{\pm 0.22}$ $95.51_{\pm 0.24}$

Full GCL $89.55_{\pm 0.23}$ $90.99_{\pm 0.18}$ $92.48_{\pm 0.19}$ $92.65_{\pm 0.20}$ $94.57_{\pm 0.21}$ $95.50_{\pm 0.19}$ $95.34_{\pm 0.20}$ $95.48_{\pm 0.17}$ $95.62_{\pm 0.18}$ $95.38_{\pm 0.21}$ $95.51_{\pm 0.20}$ $93.92_{\pm 2.15}$

Baseline $64.29_{\pm 0.34}$ $65.95_{\pm 0.25}$ $70.11_{\pm 0.30}$ $69.43_{\pm 0.27}$ $77.75_{\pm 0.29}$ $77.83_{\pm 0.30}$ $76.82_{\pm 0.28}$ $77.31_{\pm 0.29}$ $77.09_{\pm 0.27}$ $72.95_{\pm 5.50}$