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Applications of human action recognition:

Applications and Issues

Introduction Algorithms Experiments Results & Discussions Conclusion

Challenging issues:
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• Kinect sensor
– Records real time depth sequences
– Captures 3D information. Advantages:

• Extra body shape information
• Insensitive to illumination conditions and 

the colour of human clothes

• State-of-the-art techniques
– HON4D (Oreifej et al., 2013)
– HDG (Rahmani et al., 2014)
– HOPC (Rahmani et al., 2016)
– RBD (Vemulapalli et al., 2016)

Kinect sensor and Techniques
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HON4D --- Histogram of Oriented 4D Normals (Oreifej et al., 2013)

• Geometry and motion of human action were captured
• A 4D space was quantised using a 600-cell polychoron
• 120 vertices were used as projectors
• More vertices were induced randomly to increase the difference 

between two similar action classes

Algorithms to be Analyzed and Evaluated
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HDG --- Histograms of Depth Gradients (Rahmani et al., 2014) 

• A concatenation of 4 descriptors
– Histograms of depth (hod)
– Histograms of depth derivatives (hodg)
– Histograms of joint position differences (jpd)
– Histograms of joint movement volume (jmv)

• Two random decision forests were trained

Algorithms to be Analyzed and Evaluated
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HOPC --- Histogram of Oriented Principal Components (Rahmani et al., 2016)

• For a sequence of 3D pointclouds
– HOPC is extracted at each point
– Two types of support volume were 

defined
• Spatial support volume
• Spatio-temporal support volume

– Principal component analysis was 
applied

– Spatio-temporal keypoints (STKs) 
detection

– A quality factor for detecting significant 
motion variations

Algorithms to be Analyzed and Evaluated
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RBD --- Rotation-based Descriptor (Vemulapalli et al., 2016)

• 3D rotations are members of the special orthogonal group SO3

• Human actions were represented as curves after skeleton representation
• Dynamic Time Warping (DTW) handles the rate variations
• Rolling maps were used for flattening SO3

• Fourier Temporal Pyramid (FTP) representation for each unwrapped curve

Algorithms to be Analyzed and Evaluated
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Step 1: Skeletal 
Representation

Step 2: Nominal curve 
computation using DTW

Step 3: Unwrapping 
while rolling

RBD-logarithm map RBD-unwrapping while rolling

Step 4: SVM 
classification RBD-FTP representation
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5 benchmark datasets:

Experimental Datasets
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Datasets Classes Subjects Views Sensor Modalities Year

MSRAction3D 20 10 1 Kinect v1 Depth + 
3DJoints

2010

3D Action Pairs 12 10 1 Kinect v1 RGB + Depth + 
3DJoints

2013

Cornel Activity 
Dataset (CAD-60)

14 4 - Kinect v1 RGB + Depth + 
3DJoints

2011

UWA3D Single 
View

30 10 1 Kinect v1 RGB + Depth + 
3DJoints

2014

UWA3D Multiview 30 9 4 Kinect v1 RGB + Depth + 
3DJoints

2015

Sample depth images from CAD-60
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• HDG was implemented in Matlab.
• HON4D, HOPC and RBD were modified from the original authors’ 

codes.

• For the UWA3D Multiview Dataset, a cross-view action 
recognition strategy is used; for the other 4 datasets, half of the 
subjects’ data are used for training and the others for testing.

• Confusion matrices are used to illustrate the recognition accuracy 
of these algorithms.

Experimental Settings
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• Feature dimension reduction using random decision forest

Feature importance normalization for HDG
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hod hodg jmv

jpd
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• Involving 2 hyperparameters: number of trees and threshold factor

Optimization of Hyperparameters for HDG
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Results and Discussions for the first 4 datasets
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hod = histograms of depth jpd = joint position differences
hodg = histograms of depth derivatives jmv = joint movement volume features
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Results and Discussions for the first 4 datasets
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hod = histograms of depth jpd = joint position differences
hodg = histograms of depth derivatives jmv = joint movement volume features
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Results and Discussions for the UWA3D Multiview Dataset
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hod = histograms of depth jpd = joint position differences

hodg = histograms of depth derivatives jmv = joint movement volume features

View 1 (V1): Front view

View 2 (V2): Left view

View 3 (V3): Right view

View 4 (V4): Top view
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Confusion Matrix for the UWA3D Multiview Dataset

Introduction Algorithms Experiments Results & Discussions Conclusion

HDG-all features on the 
UWA3D Multiview Dataset 
when V3 and V4 are used 
for training and V1 is used 
for testing

View 1 (V1): Front view

View 2 (V2): Left view

View 3 (V3): Right view

View 4 (V4): Top view
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• Skeleton features are more robust for cross-view action 
recognition.

• HDG-all features performs better than other state-of-the-art 
approaches for cross-view action recognition.

• HOPC and RBD is more robust to noise, human body size and 
action speed variations

• Future work: build a convolutional neural network (CNN) 
architecture to make it easier, faster and more robust than existing 
approaches in dealing with challenging issues.

Conclusion and Future Work
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