

Analysis and Evaluation of Kinect-based Action Recognition Algorithms

School of Computer Science and Software Engineering Lei Wang Email: 21676963@student.uwa.edu.au Supervisor: A/Prof Du Huynh

October 2017

Applications and Issues

Applications of human action recognition:

Challenging issues:

dribble

stand

Kinect sensor and Techniques

• Kinect sensor

Algorithms

Introduction

- Records real time depth sequences
- Captures 3D information. Advantages:
 - Extra body shape information
 - Insensitive to illumination conditions and the colour of human clothes

Conclusion

- State-of-the-art techniques
 - HON4D (Oreifej et al., 2013)
 - HDG (Rahmani et al., 2014)
 - HOPC (Rahmani et al., 2016)
 - RBD (Vemulapalli et al., 2016)

Algorithms to be Analyzed and Evaluated

HON4D ---- Histogram of Oriented 4D Normals (Oreifej et al., 2013)

- · Geometry and motion of human action were captured
- A 4D space was quantised using a 600-cell polychoron
- 120 vertices were used as projectors
- More vertices were induced randomly to increase the difference between two similar action classes

WESTERN AUSTRALIA

Algorithms to be Analyzed and Evaluated

HDG ---- Histograms of Depth Gradients (Rahmani et al., 2014)

- A concatenation of 4 descriptors
 - Histograms of depth (hod)
 - Histograms of depth derivatives (hodg)
 - Histograms of joint position differences (jpd)
 - Histograms of joint movement volume (jmv)
- Two random decision forests were trained

Algorithms to be Analyzed and Evaluated

HOPC ---- Histogram of Oriented Principal Components (Rahmani et al., 2016)

Conclusion

Results & Discussions

- For a sequence of 3D pointclouds
 - HOPC is extracted at each point
 - Two types of support volume were defined
 - Spatial support volume
 - Spatio-temporal support volume
 - Principal component analysis was applied
 - Spatio-temporal keypoints (STKs) detection
 - A quality factor for detecting significant motion variations

Introduction

- 3D rotations are members of the special orthogonal group SO₃
- Human actions were represented as curves after skeleton representation
- Dynamic Time Warping (DTW) handles the rate variations
- Rolling maps were used for flattening SO₃
- Fourier Temporal Pyramid (FTP) representation for each unwrapped curve 6

Experimental Datasets

5 benchmark datasets:

Datasets	Classes	Subjects	Views	Sensor	Modalities	Year
MSRAction3D	20	10	1	Kinect v1	Depth + 3DJoints	2010
3D Action Pairs	12	10	1	Kinect v1	RGB + Depth + 3DJoints	2013
Cornel Activity Dataset (CAD-60)	14	4	-	Kinect v1	RGB + Depth + 3DJoints	2011
UWA3D Single View	30	10	1	Kinect v1	RGB + Depth + 3DJoints	2014
UWA3D Multiview	30	9	4	Kinect v1	RGB + Depth + 3DJoints	2015

Sample depth images from CAD-60

(d) talking(couch)

(e) relaxing(couch)

(f) cooking(stirring)

- **Experimental Settings**
- HDG was implemented in Matlab.
- HON4D, HOPC and RBD were modified from the original authors' codes.
- For the UWA3D Multiview Dataset, a **cross-view action recognition** strategy is used; for the other 4 datasets, half of the subjects' data are used for training and the others for testing.
- **Confusion matrices** are used to illustrate the recognition accuracy of these algorithms.

Feature importance normalization for HDG

• Feature dimension reduction using random decision forest

Optimization of Hyperparameters for HDG

• Involving 2 hyperparameters: number of trees and threshold factor

Results and Discussions for the first 4 datasets

Results and Discussions for the first 4 datasets

13

_

This result is obtained from original authors' paper for comparison.

 $V_1 \& V_2$

 V_4

23.0

20.6

25.2

 V_3

31.1

25.7

32.3

Local HOPC+STK-D [*]	52.7	51.8	59.0	57.5	42.8	44.2	58.1	38.4	63.2	43.8	66.3	48.0	52.2	
RBD-logarithm map	48.2	47.4	45.5	44.9	46.3	52.7	62.2	46.3	57.7	45.8	61.3	40.3	49.9	
RBD-unwrapping while rolling	50.4	45.7	44.0	44.5	40.8	49.6	57.4	44.4	57.6	47.4	59.2	40.8	48.5	
RBD-FTP representation	54.9	55.9	50.0	54.9	48.1	56.0	66.5	57.2	62.5	54.0	68.9	43.6	56.0	_
HDG-hod	22.5	17.4	12.5	10.0	19.6	20.4	26.7	13.0	18.7	10.0	27.9	17.2	18.0	
HDG-hodg	26.9	34.2	20.3	18.6	34.7	26.7	41.0	29.2	29.4	11.8	40.7	28.8	28.5	
HDG-jpd	36.3	32.4	31.8	35.5	34.4	38.4	44.2	30.0	44.5	33.7	44.4	34.0	36.6	
HDG-jmv	57.2	59.3	59.3	54.3	56.8	50.6	63.4	52.4	65.7	53.7	67.7	56.9	58.1	
HDG-hod+hodg	26.6	33.6	17.9	19.3	34.4	26.2	40.5	27.6	28.6	11.6	38.4	29.0	27.8	
HDG-jpd+jmv	61.0	61.8	59.3	56.0	60.0	57.4	68.8	54.2	71.1	57.2	69.7	59.0	61.3	
HDG-hod+hodg+jpd	31.0	43.5	25.7	21.4	45.9	31.1	53.2	35.7	38.0	11.6	49.7	38.3	35.4	
HDG-hod+hodg+jmv	59.0	62.2	58.1	52.0	62.5	57.1	66.0	54.2	67.7	52.7	70.3	61.1	60.2	
HDG-hodg+jpd+jmv	58.2	61.8	54.8	47.6	63.5	58.7	69.0	52.3	64.9	47.1	67.2	59.4	58.7	
HDG-all features	60.9	64.3	57.9	54.6	62.6	59.2	68.9	55.8	69.8	55.2	71.8	62.6	61.9	

Conclusion

 $V_2 \& V_3$

 V_1

47.0

38.3

42.9

 V_4

22.7

13.9

25.9

 $V_2 \& V_4$

 V_3

16.5

7.8

27.0

....

 V_1

36.6

29.7

36.1

 $V_1 \& V_4$

 V_3

32.6

29.5

38.8

 V_2

36.6

21.1

38.6

Results and Discussions for the UWA3D Multiview Dataset

Results & Discussions

 $V_1 \& V_3$

 V_2

21.9

16.2

27.4

 V_4

10.0

12.0

17.0

Experiments

hodg = histograms of depth derivatives

Training view

Holistic HOPC*

Testing view

HON4D

HOPC

 $V_3 \& V_4$

 V_2

26.8

18.4

28.5

 V_1

41.4

41.3

42.2

Mean

28.9

22.9

31.8

	View 1 (V ₁):	Front view
nors' paper for comparison.	View 2 (V ₂):	Left view
ind - joint position differences	View 3 (V ₃):	Rightview
jpu – joint position differences	View 4 (V ₄):	Top view
jmv = joint movement volume features		

.

I _

Confusion Matrix for the UWA3D Multiview Dataset

Experiments

Results & Discussions

Conclusion

View 1 (V ₁):	Front view
View 2 (V ₂):	Left view
View 3 (V ₃):	Rightview
View 4 (V ₄):	Top view

Algorithms

HDG-all features on the UWA3D Multiview Dataset when V3 and V4 are used for training and V1 is used for testing

Conclusion and Future Work

- Skeleton features are more robust for cross-view action recognition.
- HDG-all features performs better than other state-of-the-art approaches for cross-view action recognition.
- HOPC and RBD is more robust to noise, human body size and action speed variations
- Future work: build a convolutional neural network (CNN) architecture to make it easier, faster and more robust than existing approaches in dealing with challenging issues.

- I am grateful to A/Prof Du Huynh for her valuable suggestions and discussions.
- I am also thank the authors of HON4D, HOPC and RBD for making their codes publicly available.

- O. Oreifej and Z. Liu. HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences. In *CVPR*, pages 716–723, 2013.
- H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian. Real Time Action Recognition Using Histograms of Depth Gradients and Random Decision Forests. In WACV, pages 626–633, 2014.
- H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian. HOPC: Histogram of Oriented Principal Components of 3D Pointclouds for Action RecognitionPrincipal Components of 3D Pointclouds for Action Recognition. In *ECCV*, pages 742–757, 2014.
- H. Rahmani, A. Mahmood, D. Huynh, and A. Mian. Histogram of Oriented Principal Components for Cross-View Action Recognition. *TPAMI*, pages 2430–2443, December 2016.
- R. Vemulapalli and R. Chellappa. Rolling Rotations for Recognizing Human Actions from 3D Skeletal Data. *CVPR*, pages 4471–4479, 2016.
- R. Vemulapalli, F. Arrate, and R. Chellappa. Human Action Recognition by Representing 3D Skeletons as Points in a Lie Group. *CVPR*, pages 588–595, 2014.