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Abstract

Real-world visual data rarely presents as isolated, static in-
stances. Instead, it often evolves gradually over time through
variations in pose, lighting, object state, or scene context.
However, conventional classifiers are typically trained under
the assumption of temporal independence, limiting their abil-
ity to capture such dynamics. We propose a simple yet effec-
tive framework that equips standard feedforward classifiers
with temporal reasoning, all without modifying model archi-
tectures or introducing recurrent modules. At the heart of our
approach is a novel Support-Exemplar-Query (SEQ) learn-
ing paradigm, which structures training data into temporally
coherent trajectories. These trajectories enable the model to
learn class-specific temporal prototypes and align prediction
sequences via a differentiable soft-DTW loss. A multi-term
objective further promotes semantic consistency and tempo-
ral smoothness. By interpreting input sequences as evolving
feature trajectories, our method introduces a strong temporal
inductive bias through loss design alone. This proves highly
effective in both static and temporal tasks: it enhances per-
formance on fine-grained and ultra-fine-grained image clas-
sification, and delivers precise, temporally consistent predic-
tions in video anomaly detection. Despite its simplicity, our
approach bridges static and temporal learning in a modular
and data-efficient manner, requiring only a simple classifier
on top of pre-extracted features.

Code — https://github.com/Darcyddx/time-seq

Introduction

Most classification models are trained under the assump-
tion that data points are independent and identically dis-
tributed (i.i.d.). However, in many real-world scenarios such
as robotics, surveillance, medical imaging, and video anal-
ysis, visual data naturally evolves over time (Wang, Huynh,
and Koniusz 2019; Wang 2023; Zhu et al. 2024; Ding and
Wang 2025a). A person might turn their head, lighting con-
ditions may shift, or an object’s state may gradually change.
These temporal variations form coherent, smooth trajecto-
ries in feature space. Yet, standard classifiers treat such tem-
porally structured inputs as static, isolated examples, ignor-
ing the rich temporal dynamics inherent in the data.
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This mismatch between data reality and training assump-
tions limits the generalization of conventional classifiers,
particularly for tasks requiring robustness to structured per-
turbations or subtle temporal shifts. While sequence models
like RNNs, LSTMs, and Transformers can model temporal
information (Xu, Zhu, and Clifton 2023), they introduce sig-
nificant architectural complexity, require temporally anno-
tated data, and are often ill-suited for scenarios with weak
or missing frame-level labels (Zhu et al. 2024).

In this work, we ask: Can standard feedforward classi-
fiers reason over time without modifying their architecture,
simply through rethinking how we supervise them? We show
the answer is yes. We propose a lightweight, general-purpose
training framework that imparts temporal inductive bias into
static classifiers purely through loss design. Our method op-
erates on smoothly evolving input sequences generated via
temporal augmentations that mimic natural transitions such
as pose changes or appearance shifts. These sequences pass
through a frozen pretrained encoder, followed by a classifier.

At the heart of our framework is a novel Support-
Exemplar-Query (SEQ) learning paradigm that structures
supervision around intra-class temporal patterns. For each
query sequence, we align its predictions to class-specific
temporal prototypes using a differentiable soft Dynamic
Time Warping (soft-DTW) objective. In addition to align-
ment, we incorporate semantic supervision (via cross-
entropy) and a smoothness regularization that penalizes
abrupt prediction changes. This yields a key insight: fem-
poral reasoning can emerge in static feedforward models
purely through supervisory signals, without any architec-
tural modifications or explicit sequence modeling. Our ap-
proach enables such models to learn how class semantics
evolve temporally, bridging static and dynamic tasks in a
unified, modular, and data-efficient manner.

We validate our method on two challenging domains: (i)
fine-grained and ultra-fine-grained visual recognition under
structured augmentations, where modeling temporal consis-
tency improves generalization, and (ii) frame-level video
anomaly detection, where capturing normal temporal behav-
ior enables early and accurate anomaly detection. Our main
contributions are summarized as follows:

i. We introduce SEQ learning, a novel and effective train-
ing paradigm that enables static feedforward classifiers
to capture and use temporal class-specific prototype tra-
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Figure 1: Overview of our framework. (a) Temporally smooth sequences are generated via time-indexed transformations A;
(or sourced from natural videos) and processed by a frozen, image-pretrained vision transformer to extract frame-wise features.
A lightweight temporal classifier is then trained to produce feature trajectories. (b) These trajectories are optimized using a
multi-term objective with the Support-Exemplar-Query (SEQ) learning framework (see Fig. 3) to (i) align with class-specific
prototype trajectories that capture typical temporal patterns (violet block), (ii) achieve accurate classification through semantic
supervision (vivid green block), and (iii) ensure smooth and consistent temporal evolution (gray brown block).

jectories, without requiring any architectural changes.
This challenges the common assumption that temporal
reasoning requires specialized sequence models.

ii. We develop a unified, principled objective combining
soft-DTW temporal alignment, semantic supervision,
and smoothness regularization. This framework endows
standard classifiers with robust temporal reasoning capa-
bilities purely through loss design and is, to our knowl-
edge, the first to do so.

iii. We validate our method on diverse and challenging
tasks, including fine-grained and ultra-fine-grained im-
age recognition as well as video anomaly detection. Our
approach shows significant improvements in general-
ization, temporal consistency, and anomaly sensitivity
while using only feedforward architectures.

Related Work

Temporal modeling in classification. Classical approaches
for temporal data rely on architectures explicitly designed
to capture sequential dependencies, such as recurrent neural
networks (RNNs) including LSTMs and GRUs (Hochreiter
and Schmidhuber 1997), and more recently, attention-based
models like Transformers (Vaswani et al. 2017; Bertasius,
Wang, and Torresani 2021; Chen et al. 2024; Raj, Wang, and
Gedeon 2025). These methods excel at modeling time series,
video, and other sequential data but often require complex
architectures, high computational costs, and dense temporal
supervision. Their performance degrades when frame-level
labels are scarce or when temporal ordering is weak or noisy.
In contrast, our method injects temporal inductive bias di-
rectly into the training objective of standard static classi-
fiers, without architectural modifications or recurrent com-
ponents. By aligning prediction sequences to learned tem-
poral prototypes via soft-DTW, we enable temporal rea-
soning within simple feedforward models. This approach
reduces complexity and broadens applicability to settings
where temporal labels or models are unavailable.
Prototype-based learning. Prototype-based classification
methods, central to few-shot and metric learning, represent

classes by exemplars or centroids in feature space, facili-
tating generalization from limited data (Snell, Swersky, and
Zemel 2017; Sung et al. 2018; Wang and Koniusz 2022b).
Extensions to temporal tasks typically learn prototypes with
recurrent or convolutional temporal encoders (Liu, Song,
and Qin 2020; Wang and Koniusz 2022a).

Our work introduces a novel perspective by defining pro-
totypes in the prediction space as class-specific softmax
trajectories over time. Instead of embedding-level compar-
isons, we align entire prediction sequences to these tempo-
ral prototypes using soft-DTW, enforcing not only correct
classification but also coherent temporal evolution of pre-
dictions. This shift enables temporal supervision even when
only static labels are available, representing a significant de-
parture from prior prototype-based methods.

Temporal and smooth augmentations. Data augmentation
techniques improve robustness by exposing models to con-
trolled input variations (Cubuk et al. 2020; Hendrycks et al.
2019). Temporal smoothness regularization and augmenta-
tions that mimic natural transitions have been used in video
and self-supervised learning to encourage continuity and
consistency (Sermanet et al. 2018; Qian et al. 2021; Schi-
appa, Rawat, and Shah 2023; Chen et al. 2024).

We build upon these ideas by using smooth, structured
augmentations to synthesize temporal sequences from static
inputs, simulating natural feature trajectories such as pose
shifts or illumination changes. Crucially, we use these aug-
mentations not only as regularizers but as core supervisory
signals through alignment with temporal prototypes. This
enables temporal inductive bias injection even in the absence
of real temporal data or frame-level labels.

Learning paradigms for temporal and metric learn-
ing. Few-shot and metric learning methods often rely on
episodic training paradigms organizing data into support and
query sets, promoting generalization from limited exemplars
(Snell, Swersky, and Zemel 2017; Sung et al. 2018). Some
approaches extend these paradigms to temporal data by in-
corporating sequential encoding (Liu, Song, and Qin 2020;
Wang and Koniusz 2022a,b; Wang et al. 2024b).



Figure 2: Examples from Flowers-102, SoyAging, Stanford
Dogs, and Cars show how augmentations create temporal
variations from one image. The first column shows origi-
nals (green); others apply augmentations by color: flip (red),
zoom (blue), rotation (purple), color jitter (orange), shear
(brown), translation (pink), blur (gray), and cutout (cyan),
enriching the feature space with varied appearances.

Our proposed SEQ learning paradigm uniquely struc-
tures training data as temporally coherent feature trajectories
grouped into support, exemplar, and query roles. This design
encourages classifiers to internalize intra-class temporal dy-
namics through alignment with class-specific prediction pro-
totypes. Unlike existing episodic methods, SEQ integrates
soft-DTW alignment on prediction trajectories as a central
supervision signal, enabling temporal reasoning without ar-
chitectural or inference-time complexity. To our knowledge,
this is the first framework to combine sequence-level proto-
type alignment, smooth augmentation-driven trajectory gen-
eration, and static feedforward classifiers into a lightweight,
unified temporal learning paradigm.

Method
Overview

We introduce a novel framework that infuses temporal in-
ductive bias into static classifiers without requiring archi-
tectural changes or recurrent mechanisms, see Fig. 1 for
framework overview. The central insight of our method is
to reinterpret static or sequential inputs as temporally coher-
ent feature trajectories, which are then aligned with class-
specific temporal prototypes using a differentiable sequence
alignment procedure. This enables conventional feedfor-
ward models to exhibit temporal reasoning capabilities, en-
hancing their performance in scenarios where temporal con-
sistency is crucial. It consists of three key components:

i. Feature trajectories extraction. We encode static or
video inputs into smoothly evolving feature sequences
that reflect temporal coherence.

ii. Support-Exemplar-Query (SEQ) learning. We pro-
pose a novel SEQ paradigm that uses intra-class tempo-
ral structure by organizing data into support, exemplar,
and query trajectories, encouraging the model to learn
temporally grounded representations.

iii. Multi-term objective. We optimize a composite loss
function comprising (i) alignment loss for matching fea-
ture trajectories to temporal prototypes, (ii) semantic su-

pervision via class labels, and (iii) a temporal smooth-
ness regularization to maintain consistency across time.

The result is a robust, temporally aware classifier that gener-
alizes effectively across both synthetic and real-world tem-
poral variations, all while maintaining compatibility with ex-
isting architectures. We begin by describing our notation.
Notation. Let Z, = {1,2,...,7} denote a time index set
of length 7. A stacked vector of elements «; is written as
[aiiliez,, and a matrix formed from elements «;; is de-
noted [Olij}(i,j)ezlxz - Scalars are represented in standard
font (e.g., ), vectors in bold lowercase (e.g., x), matrices
in bold uppercase (e.g., X), and tensors in calligraphic font
(e.g., X). The inner product between two matrices Il and D
is defined as the standard Euclidean inner product between
their vectorized forms: (IT, D) = (vec(II), vec(D)).

Capturing Evolving Feature Trajectories

Smooth temporal augmentations from images. Static im-
ages inherently lack temporal structure, limiting a model’s
capacity to learn temporal dynamics or develop temporal
reasoning. To overcome this limitation, we synthesize vir-
tual temporal sequences from a single image X € R *Wx3
by applying smooth, time-varying augmentations over a vir-
tual time index ¢ € 7. Formally, we construct a sequence:

X = [Xl,XQ,...,XT], with X} = At(X), (1)

where A; denotes a transformation with parameters 6, that
vary smoothly over time. Each augmentation parameter p €
0 (e.g., rotation angle, brightness, translation, efc.) evolves
linearly over the sequence length 7:
t—1

Dt = Pstart + ﬁ(pend - pstart)7 2
where pgare and peng are randomly sampled endpoints. This
linear interpolation ensures that the transformations evolve
continuously across time, mimicking realistic temporal tran-
sitions. The operator A; thus combines spatial and photo-
metric effects such as rotation, translation, scaling, bright-
ness, contrast, and blur into a time-indexed transformation:

Ay =T(6,). 3)

These augmentations emulate plausible temporal changes,
such as gradual pose shifts, or camera zooms, without re-
quiring access to video data or temporal annotations. Fig. 2
shows visualizations of temporal augmentations on images.
Natural temporal sequences from videos. In contrast,
video data naturally provides temporal continuity, capturing
authentic dynamics such as object motion, scene evolution,
and environmental changes. A video clip can be represented
as: X = [X), Ay, ..., X;], where each frame X is tempo-
rally correlated with its neighbors, forming a coherent se-
quence. This inherent structure encodes rich temporal infor-
mation that can be directly exploited during training.

Extracting frame-wise features. We adopt a frozen
image-pretrained backbone Mn, to extract frame-wise fea-
tures from both synthetic and natural sequences. Each frame
X is independently processed:

2zt = Mlmg(Xt)7 4
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Figure 3: Support-Exemplar-Query (SEQ) models class-
consistent temporal dynamics by constructing a support set
of sequences to form a class-specific exemplar that captures
typical prediction trajectories over time. A guery sequence is
then aligned against this exemplar to enforce temporal con-
sistency and reveal deviations from expected class behavior.

yielding a sequence of feature vectors:
27 € RTY, (5)

where d denotes the dimensionality of the extracted features.
We adopt image-pretrained backbones for their rich, trans-
ferable visual representations, stability across domains, and
efficiency benefits, enabling our classifier to focus solely on
learning temporal relationships from strong, frozen features.

We then train a classifier f, typically a fully connected
layer followed by a softmax activation:

d)t:f(zt;w)a (I): [¢17"°7¢7‘] GRTxca (6)

where C' denotes the number of classes. The output ® is
used in classification tasks guided by dedicated loss objec-
tives. This clean separation between feature extraction and
temporal modeling maintains architectural simplicity, while
enabling our framework to process both synthetic and real
temporal sequences in a unified and scalable manner.

Z:[Zl,ZQ,...

Support-Exemplar-Query (SEQ) Learning

We propose Support-Exemplar-Query (SEQ) learning, a
novel framework for modeling class-consistent temporal dy-
namics and detecting structural deviations within sequen-
tial data. SEQ is built on three key components: (i) a sup-
port set consisting of class-consistent sequences, (ii) a class-
conditioned exemplar that summarizes temporal regulari-
ties, and (iii) a query set, containing sequences evaluated
against their corresponding class exemplars for consistency.

The SEQ framework operates in two stages (see Fig. 3).
First, a support-query matching phase selects relevant sup-
port sequences for a given query. Second, an exemplar-query
alignment phase measures the temporal similarity between
the query and a synthesized class exemplar via differen-
tiable alignment. The exemplar acts as a dynamic reference
that encodes intra-class temporal coherence, facilitating in-
terpretable matching and anomaly detection.

By explicitly capturing the temporal structure within
each class and comparing incoming sequences against these
learned exemplars, SEQ enables both fine-grained classifi-
cation and structural deviation detection. Importantly, SEQ
uses an episodic training paradigm, inspired by few-shot
learning, which promotes robust generalization to novel
classes and distribution shifts.

Support-query matching. In each training episode, we
sample two disjoint subsets from the training data: a query
set and a support set. The query set, denoted as S, con-
sists of sequences from various classes (e.g., a batch of train-
ing samples), simulating real-world inputs that may be am-
biguous or noisy. Given a query sequence ®° € S with
known class label ¢, we construct the corresponding support
set S® = {®? } ez, by sampling N additional sequences
from the same class c. These support sequences are used to
synthesize a class exemplar that represents typical temporal
score evolution for class c.

To compare score sequences of variable lengths, we use
the -Soft Dynamic Time Warping (Soft-DTW) distance,
a differentiable relaxation of classical DTW. It enables
smooth, gradient-based optimization and aggregates align-
ment costs over multiple plausible warping paths.

Let ® =[¢p1,..., ¢, €ER™C and ®' =[¢},..., )] €

R™ %€ denote two sequences of softmax prediction scores.
The Soft-DTW distance is computed as:

dprw (®, ®') = SoftMin, ({(II, D(®,®')) | IL € P, .+ }),

(N
where P, .+ is the set of valid alignment paths between the
two sequences, and the alignment cost (IT, D) is computed

over the distance matrix D € RQXT/, defined by:
D = [dye(bm. D)) ()€ Lo XTs (8)

Here, d2, .(-,-) is typically the squared Euclidean distance.

base

The SoftMin operator is given by:

SoftMin, () = —vlog Z exp(—a;/7), 9

where v > 0 controls the softness of the alignment. As
v — 0, it converges to standard DTW; larger + values yield
smoother, more flexible alignments.
Query-exemplar alignment. To represent the temporal dy-
namics of each class, we synthesize an exemplar sequence
by computing the Fréchet mean (or barycenter) of the sup-
port set under Soft-DTW. This exemplar captures the aver-
age temporal evolution of softmax scores for class ¢, acting
as a dynamic prototype for alignment.

Given support set S® = {®? },,cz, With possibly varying
sequence lengths 7,,, the exemplar M*® € R7*C (where 7 is
the average length of the sequences in S§°) is defined as:

N
M* = argmin > " ddpy (@5, M"),  (10)

Me®cR7%C 1 Tn

where w, € R, are normalized weights satisfying

Zg:l wy, = 1. This formulation jointly aligns and averages
the support sequences, yielding a smooth, representative tra-
jectory of class-consistent score dynamics.

Episodic training paradigm. In each episode, we select
a query sequence P, sample a support set S°® of size N,
and compute the corresponding class exemplar M*°. We
then align the query to the exemplar using Soft-DTW, ob-
taining a class-conditioned similarity score. Note that for
generated virtual sequences, we ensure that both the query



and its corresponding support sequences undergo identical
temporal augmentations. This consistency preserves align-
ment integrity and allows the model to focus on class-
specific dynamics rather than artificial temporal discrepan-
cies. This alignment-based approach equips the model to
capture temporal consistency, detect deviations from class
patterns, and generalize to new temporal dynamics. Training
across diverse episodes encourages abstraction of temporal
class structure and adaptability to unseen scenarios.

Temporal Classifier with Multi-term Objective

We propose a lightweight yet expressive classifier that op-
erates over temporal sequences of features using a single
fully connected layer followed by softmax. The objective is
to train this model to produce temporally coherent, seman-
tically accurate, and class-consistent prediction trajectories.
Specifically, the output sequence ® = [¢h1, . .., ¢] should:
(1) align with a class-specific prototype trajectory that en-
codes the typical temporal prediction pattern, (ii) accurately
classify each timestep or sequence via semantic supervi-
sion, (iii) evolve smoothly over time, avoiding abrupt output
changes. We now present the unified multi-term objective.

Temporal prototype alignment. For each class ¢ €
{1,...,C} in an episode, we construct a class-specific proto-
type sequence M *® € R™*¢ using the Soft-DTW barycenter
method (see equation 10). This prototype captures the char-
acteristic temporal evolution of predictions for class c. To
align each training query sequence ® " with its correspond-
ing prototype M °, we minimize their Soft-DTW distance:

IS |
dhgn = |S | ZdDTW Ql,M;) (11)

Here, S§* denotes the set of query sequences, with |S”| as
its cardinality. This alignment encourages the model to pro-
duce temporally structured and class-consistent prediction
sequences, even when the input dynamics are nonlinear.
Cross-entropy supervision. To ensure semantic accuracy,
we apply standard cross-entropy (CE) loss at either the
frame or sequence level, depending on the task:

i. For sequence tasks (e.g., anomaly detection) with frame-
level labels ¥, cross-entropy is applied at each timestep:
IS'] =

Lep = |S|ZZCE v (12)

i=1 t=1

ii. For static tasks (e.g., image classification), predictions
are averaged over time to capture visual variations:

IS”| T
1
Lcg = |S pA E CE <T E ¢i,tvyi>- (13)
t=1

This term ensures that predlctlons convey the correct se-
mantic labels at the appropriate temporal granularity.
Temporal smoothness regularization. We add a smooth-
ness loss to enforce temporal stability by penalizing abrupt
changes between consecutive predictions:

S| =

»Csmooth |S ‘ ZZHd)zt

=1 t=2

G|l (14)
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(a) Flowers-102 (b) SoyAging

Figure 5: Visualization of selected FC weight regions shows
a clear comparison between the baseline (left) and our tem-
poral modeling (right). Temporal modeling yields stronger,
more distinct patterns, enhancing feature discrimination.
Even on the ultra-fine-grained SoyAging, our approach pro-
duces clearer, more structured weights, demonstrating the
advantages of temporal supervision in feature learning.

This encourages the model to produce gradual, interpretable
prediction changes that mirror natural dynamics such as mo-
tion, progression, or transitions.

Final multi-term objective. The complete training loss
combines these three components:

L= Ealign +a ECE + B Esmoolhy (15)

where « and [ are hyperparameters that balance semantic
supervision and temporal regularity. In our experiments, we
also incorporate exemplars into both CE loss and temporal
smoothness regularization to enhance robustness against se-
mantic variations, perturbations, and class prototype shifts.
For sequence tasks, exemplars help capture fine-grained
temporal variations within sequences. For image classifi-
cation, they assist in addressing shifts in class prototypes,
thereby improving generalization across diverse conditions.

Experiment
Experimental Setup

Datasets. We evaluate fine-grained recognition on Stan-
ford Cars (Krause et al. 2013), Dogs (Khosla et al. 2011),
Flowers-102 (Nilsback and Zisserman 2008), and the ultra-
fine-grained SoyAging dataset (Yu et al. 2021b). Video
anomaly detection uses MSAD (Zhu et al. 2024) with Pro-
tocol ii, covering various anomaly types and scenarios. All
evaluations follow standard protocols for fair comparison.

Models. Our method trains a single FC on frozen vision
transformer features, without fine-tuning the backbone. We
extract features using CLIP-ViT-L/14/224 (ImageNet-1K)
for Stanford Cars, CLIP-ViT-B/16/224 (ImageNet-1K) for
Oxford Flowers-102, and ViT-B/16/224 (ImageNet-1K) for
Stanford Dogs. For the specialized SoyAging dataset, we use
CLE-ViT (Swin-B/448) pretrained on ImageNet-21K (Yu,
Wang, and Gao 2023) to use its larger corpus for ultra-fine-



Stanford Cars | Stanford Dogs | Oxford Flowers-102 | SoyAging
Method Acc|Method Acc|Method Acc|Method Acc
AP-CNN (Ding et al. 2021) 95.4|RAMS-Trans (Hu et al. 2021) 92.4|MGE-CNN (Zhang et al. 2019)  95.9|Cutmix (Yun et al. 2019) 62.3
P2P-Net (Yang et al. 2022) 95.4|PMG-V2 (Du et al. 2022) 90.7|SJFT (Ge and Yu 2017) 97.0|DCL (Chen et al. 2019) 73.2
CP-CNN (Liu et al. 2022) 95.4|ViT-NeT (Kim, Nam, and Ko 2022) 93.6|OPAM (Peng, He, and Zhao 2017) 97.1|ViT (Dosovitskiy et al. 2021) 67.0
TransFG (He et al. 2022) 94.8| TransFG (He et al. 2022) 92.3|Cosine (Barz and Denzler 2020)  97.2|DeiT (Touvron et al. 2021) 69.5
ViT-NeT (Kim, Nam, and Ko 2022) 95.0/IELT (Xu et al. 2023) 91.8|PMA (Song et al. 2020) 97.4|MaskCOV (Yu et al. 2021a) 75.9
DCAL (Zhu et al. 2022) 95.3|LGTF (Zhu et al. 2023) 92.1|DSTL (Cui et al. 2018) 97.6|TransFG (He et al. 2022) 722
PMG-V2 (Du et al. 2022) 95.4|ACC-ViT (Zhang et al. 2024) 92.9|MC-Loss (Chang et al. 2020) 97.7|SPARE (Yu, Zhao, and Gao 2022)  75.7
GDSMP-Net (Ke et al. 2023) 95.3|MP-FGVC (Jiang et al. 2024) 91.0|CAP (Behera et al. 2021) 97.7Mix-ViT (Yu et al. 2023) 76.3
MPSA (Wang et al. 2024a) 95.4|MPSA (Wang et al. 2024a) 95.4|SR-GNN (Bera et al. 2022) 97.9|CLE-ViT (Yu, Wang, and Gao 2023) 79.0*
Baseline 94.7|Baseline 93.5|Baseline 97.6/Baseline 79.6
w/ feat. traj. 95.6|w/ feat. traj. 96.0|\w/ feat. traj. 98.4\w/ feat. traj. 79.8
w/ feat. traj. &SEQ 96.1|w/ feat. traj. &SEQ 96.3|\w/ feat. traj. &SEQ 98.4|w/ feat. traj. &KSEQ 80.0

Table 1: Performance on fine-grained and ultra-fine-grained recognition datasets. Baseline and our methods use a single-layer
classifier. w/ feat. traj. applies smooth temporal augmentations to produce feature trajectories, while w/ feat. traj. &SEQ is our
full model with both sequence and temporal modeling. Bold marks the best. Temporal classifier improves performance across

image datasets, highlighting the value of temporal cues in fine-grained recognition. * indicates reproduced results.
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Figure 6: Anomaly prediction comparison. Grey regions in-
dicate ground-truth anomalies. Blue and red curves show
the baseline and our method. Our approach detects anoma-
lies more accurately and earlier, with scores crossing the 0.5
threshold in closer alignment with the ground truth.

grained tasks. For MSAD, frame-level features are extracted
using CLIP-ViT-B/16/224 pretrained on WeblmgText.

Setups. In all experiments, the baseline is a static classi-
fier with a single FC layer and softmax. We extend this
by exploring feature trajectories, which represent smooth
feature evolution through synthetic temporal augmentations
(for static images) or natural temporal changes (for videos
like MSAD). Our full model integrates feature trajectories
with SEQ to effectively capture dynamic visual patterns over
time. We benchmark against recent state-of-the-art methods
on each dataset to validate the competitiveness of our results.

Quantitative and Qualitative Evaluation

Hyperparameter evaluation. Fig. 4 shows the impact of
key hyperparameters. The weight « controls the classifica-
tion loss, with performance improving as « increases and
stabilizing beyond o« > 1, underscoring the need to balance

alignment and classification. The smoothness regularizer 3
exhibits stable performance across a wide range, indicat-
ing robustness on MSAD. The softness parameter vy in soft-
DTW benefits from moderate values, e.g., 0.1, particularly
on Flowers-102. Lastly, N defines the number of sequences
in the support set for computing class exemplars. Larger N
leads to more reliable temporal estimates, with gains satu-
rating at N = 3 on Flowers-102.

Analysis of learned weights. As shown in Fig. 5, temporal
modeling produces stronger, more structured, and more dis-
tinct weight patterns compared to the baseline. These clearer
weight structures suggest enhanced feature discrimination,
as the model learns to better separate meaningful variations
through temporal supervision. Even on challenging ultra-
fine-grained datasets such as SoyAging, where differences
are inherently subtle, our method leads to more pronounced
and organized weight patterns. This demonstrates that our
approach introduces an implicit temporal inductive bias into
otherwise static classifiers, without requiring architectural
modifications. Instead, this bias is induced through simple
temporal augmentations and sequence-based training objec-
tives, providing a lightweight yet effective alternative to tra-
ditional heavy temporal models.

Fine-grained image recognition. In Table 1, when smooth
temporal augmentations are applied, performance improves
across all datasets. Adding SEQ learning on top of feature
trajectories yields further improvements. This suggests that
modeling temporal dependencies, even in static images, can
enhance feature discrimination by implicitly learning con-
sistent patterns and relationships across augmented views.
Particularly in ultra-fine-grained recognition like SoyAging,
the incremental gains indicate that temporal cues help ad-
dress extreme subtlety in class differences where traditional
spatial cues alone may be insufficient. These findings reveal
that temporal consistency, typically associated with video or
time-series data, can be used as a powerful inductive bias to
improve static image classification, especially in challenging
fine-grained domains, without increasing architectural com-
plexity (Ding et al. 2025b). This insight opens new avenues
for bridging temporal modeling techniques with static image



Assault Explosion Fighting Fire

Obj. Fall People Fall Robbery Shooting Traffic Acc. Vandalism Water Inc. Overall

Method

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

RTFM (I3D) 53.9 66.4 66.0 76.6 79.8 88.6 44.9 71.1 84.6 89.3 45.7

52.6 70.2 88.0 87.5 89.2 64.1 57.7 74.9 73.0 98.1 99.6 86.6 68.4

MGFN (SwinT) 50.2 49.6 50.9 58.1 57.2 67.1 51.4 74.2 41.3 51.6 44.4 40.3 40.1 638.5 51.4 63.9 504 42.3 42.6 40.9 58.6 87.2 69.3 33.6
MGEN (I3D) 53.9 60.2 59.1 66.5 80.6 89.5 66.1 82.9 89.9 94.6 53.6 44.9 72.2 854 68.3 80.6 66.9 54.7 84.4 78.5 81.9 96.1 81.2 59.3
UR-DMU 56.9 64.5 67.9 74.5 83.9 90.4 61.2 82.9 92.1 95.8 42.5 43.7 63.5 79.3 81.4 87.8 62.0 55.6 84.7 77.0 98.5 99.5 85.0 68.3
EGO 52.2 57.5 57.6 74.4 66.5 72.8 62.9 86.7 92.3 94.8 354 43.8 64.8 87.5 68.6 78.4 69.9 64.3 88.1 81.4 81.9 95.4 87.3 64.4
IEF-VAD 660 - 663 - 798 - 494 - 759 - 425 - 669 - 869 - 701 - 758 - 889 - 821 -

Baseline 48.2 51.5 77.3 84.6 73.1 83.9 78.2 94.7 83.7 89.7 49.8 46.3 65.5 86.4 79.8 88.1 63.0 552 76.2 75.0 99.6 99.9 86.7 72.2
w/ feat. traj. 50.6 51.1 76.1 85.3 70.5 82.8 76.7 94.5 85.6 90.7 56.2 50.7 67.0 86.2 79.1 88.3 61.4 52.6 84.3 78.3 99.3 99.8 92.1 77.3
w/ feat. traj. &SEQ 59.3 60.2 84.9 88.9 79.8 89.9 81.4 95.6 85.2 90.8 52.3 48.7 68.1 87.4 79.5 88.6 60.6 50.4 85.0 80.3 99.6 99.9 90.5 77.5

Table 2: Performance by anomaly type on MSAD. The best result is marked with bold and underline, and the second-best is
shown in bold. We compare against recent methods, including RTFM (Tian et al. 2021), MGEN (Chen et al. 2023), UR-DMU
(Zhou, Yu, and Yang 2023), EGO (Ding et al. 2025a), and IEF-VAD (Jeong, Park, and Imani 2025), which rely on complex
architectures and spatio-temporal feature extraction. In contrast, our method, despite using only a temporal classifier on top of
frozen features, consistently achieves strong and often superior results across anomaly types. This highlights the effectiveness
of simple temporal modeling in capturing temporal dynamics without heavy architectural complexity.

Frontdoor Mall

Office Parkinglot Pedestr. st. Restaurant

Road Shop  Sidewalk St. highview Train Warehouse Overall

Method AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP
RTEM (I3D) 81.8 79.3 88.1 76.6 76.6 72.8 80.7 45.8 94.0 48.5 88.3 79.1 84.3 57.9 85.3 75.6 88.3 68.8 72.0 28.5 51.4 3.3 82.7 57.0 86.6 68.4
MGEN (SwinT)  59.5 51.7 18.5 20.1 64.1 52.3 67.9 19.0 75.9 9.7 67.9 44.0 70.6 26.3 62.7 43.0 69.0 25.9 75.3 233 65.4 5.2 70.1 30.1 69.3 33.6
MGEN (I3D) 82.580.8 73.8 71.3 71.5 58.2 68.9 14.8 94.8 36.2 95.1 91.3 76.5 35.8 85.6 78.4 78.5 57.277.9 29.3 40.3 2.1 58.3 242 81.259.3
UR-DMU 84.8 82.8 91.0 83.8 77.8 67.3 91.4 53.9 81.9 11.5 03.1 87.4 83.0 64.4 81.3 64.5 86.5 64.1 85.0 37.7 59.0 3.1 81.2 59.1 85.0 68.3
EGO 85.2 81.6 82.3 73.4 80.0 71.7 96.8 75.2 97.5 52.0 94.3 73.9 89.8 64.6 83.4 722 87.145.028.2 10.1 80.8 7.8 84.7 46.6 87.3 64.4
IEF-VAD e

Baseline 83.0 83.3 90.1 82.0 79.5 76.0 96.3 83.9 49.0 254 8590 77.3 63.1 435 92.1 84.7 85.4 67.3 99.7 98.8 91.7 242 79.0 45.9 86.7 72.2
w/ feat. traj. 85.2 82.4 90.1 82.0 83.0 75.0 97.0 86.3 46.8 10.7 90.8 81.5 81.4 60.4 90.9 82.0 93.2 80.9 99.9 99.4 95.7 42.9 94.2 69.9 92.177.3
w/ feat. traj. &SEQ 86.0 84.6 89.6 84.2 84.5 79.2 92.9 64.4 39.1 10.0 92.2 84.0 79.5 62.4 88.0 79.6 87.3 71.4 99.8 99.2 95.3 36.7 93.5 70.9 90.5 77.5

Table 3: Performance by Scenario on MSAD. We report results on 12 test scenarios, excluding Highway and Park, which do not
contain anomalous events. Our methods, w/ feat. traj. and w/ feat. traj. & SEQ, achieve strong performance across all scenarios.

tasks to push the limits of visual recognition accuracy.

Evaluation on MSAD. Analyzing performance by anomaly
type (Table 2), our method consistently achieves competi-
tive or superior results compared to recent state-of-the-art
approaches, despite using a simple classifier on frozen fea-
tures. This demonstrates the effectiveness of lightweight
temporal modeling in capturing complex anomaly dynam-
ics without relying on heavy spatio-temporal architectures.
Anomalies such as explosions, fires, and vandalism benefit
notably from integrating feature trajectories and SEQ learn-
ing, leading to substantial performance gains (see Fig. 6 for
prediction comparison). The strong performance achieved
without complex architectures further suggests that well-
extracted frozen features, when paired with effective tem-
poral modeling, provide a robust foundation for anomaly
recognition. Across scenarios (Table 3), the model maintains
stable and reliable detection across diverse environments,
from indoor settings like malls and offices to outdoor scenes
such as sidewalks and parking lots. This demonstrates that
temporal modeling via feature trajectories and SEQ learning
adapts well to varied spatial contexts and activity patterns.

On the role of time. Our findings offer new insights into
the importance of time in both visual and video recognition.
Temporal information is not only crucial for video analy-
sis but also enhances static image recognition when prop-
erly used. With simple temporal augmentations and SEQ-
based supervision, standard feedforward classifiers, without
any architectural modifications, can effectively reason over

time. This demonstrates that temporal inductive bias can be
introduced through training strategies rather than architec-
tural complexity. Our experiments consistently show per-
formance gains across diverse datasets, from fine-grained
image classification to video anomaly detection. These im-
provements stem from modeling feature trajectories and en-
forcing temporal consistency, enabling models to capture
subtle dynamics and patterns over time. This lightweight ap-
proach challenges the common belief that temporal reason-
ing requires heavy sequential models like transformers. In-
stead, our results emphasize that the way we supervise tem-
poral information, by aligning it with feature evolution, can
be equally or even more impactful.

Conclusion

We introduced a simple yet effective training framework that
equips standard feedforward classifiers with temporal rea-
soning through a carefully designed loss function, without
altering model architecture. At its core is our SEQ learn-
ing, which aligns prediction sequences with temporal pro-
totypes via soft-DTW, further guided by semantic consis-
tency and temporal smoothness objectives. This framework
enables lightweight classifiers to model temporal dynamics,
yielding robust, temporally consistent predictions for both
fine-grained visual recognition and video anomaly detec-
tion. By bridging static classifiers and temporal modeling
through supervision alone, our method offers an efficient al-
ternative to specialized sequence models.
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Appendices
A. Video Anomaly Detection

Video anomaly detection aims to identify abnormal events
in temporal visual data. Conventional methods include
reconstruction-based models (Hasan et al. 2016; Ding and
Wang 2024; Liu et al. 2018; Gong et al. 2019) and tempo-
ral embedding learning (Ding and Wang 2025b; Park, Noh,
and Ham 2020), which often require specialized architec-
tures and are sensitive to irrelevant changes like background
motion or lighting (Wang, Huynh, and Mansour 2019; Zhu
et al. 2024).

Prototype-based anomaly detection has gained traction by
modeling normality via latent prototypes (Huang, Kang, and
Wu 2024). Our approach redefines normality in terms of
prediction-space dynamics: deviations from class-consistent
prediction trajectories indicate anomalies. This results in
a lightweight, interpretable model capable of frame-level
anomaly detection without complex reconstruction losses or
custom temporal encoders.

We select image-pretrained backbones for several com-
pelling reasons. First, they encode rich, generalizable vi-
sual representations transferable across diverse tasks. Sec-
ond, unlike video-pretrained models that may overfit to
motion-specific artifacts, ImageNet embeddings remain
stable and domain-agnostic. Third, freezing the backbone
yields substantial efficiency gains, reducing training time,
memory footprint, and energy consumption, while miti-
gating overfitting risks. This modularity allows the classi-
fier to concentrate exclusively on learning temporal rela-
tionships from high-quality visual features.

B. Temporal Inductive Bias in Action

We present a principled and versatile strategy for em-
bedding temporal inductive biases into standard feedfor-
ward classifiers. By encouraging models to learn not only
class semantics but also the expected temporal evolu-
tion of predictions under smooth input variations, our
method enables temporal reasoning without architectural
modifications or reliance on sequence models. This ap-
proach bridges both static and temporal domains, from
fine-grained visual recognition enhanced with synthetic
dynamics to naturally evolving video streams, all while
maintaining simplicity and broad applicability.

Fine-grained image recognition. In static recogni-
tion tasks, we simulate temporal progression by applying
smoothly varying augmentations to individual images, such
as gradual pose shifts, lighting changes, or appearance per-
turbations. These transformations create synthetic sequences
that expose the classifier to the kinds of structured variations
that occur in real-world observations. Through this process,
the model learns to maintain consistent and confident pre-
dictions over these evolving inputs, effectively acquiring
robustness to structured perturbations and intra-class vari-
ability, key challenges in fine-grained recognition. Impor-
tantly, our method captures not only static class identity but

also characteristic prediction trajectories over these pseudo-
temporal sequences, serving as an implicit form of temporal
supervision even in datasets lacking real temporal signals.

Video anomaly detection. For temporal anomaly detec-
tion, we use naturally evolving video sequences to model
the typical temporal dynamics of normal behavior. Support
sets comprising normal sequences are used to construct pro-
totype trajectories, which capture class-consistent temporal
evolution in feature space. The model then performs fine-
grained, frame-level anomaly detection by identifying devi-
ations from these learned prototypes. This setup naturally
supports early anomaly detection: anomalies can be flagged
promptly as soon as prediction trajectories deviate from the
expected normal patterns. Such responsiveness is critical in
applications requiring timely monitoring and intervention,
such as industrial inspection, medical monitoring, or secu-
rity surveillance.

C. Relation to Existing Frameworks

Our SEQ learning adapts and extends concepts from con-
trastive learning, few-shot learning, and metric learning to
provide a new framework for fine-grained visual recognition
and detecting anomalous patterns in sequential data.

Contrastive learning framework. Our SEQ learning
framework draws inspiration from contrastive learning,
which learns robust representations by encouraging similar-
ity between positive pairs and dissimilarity between nega-
tives (Chen et al. 2020; Kuang et al. 2021; Oord, Li, and
Vinyals 2018). However, unlike conventional instance-level
contrastive learning, SEQ operates at the sequence level, us-
ing temporal alignment rather than pointwise distance. It in-
troduces an implicit temporal inductive bias by aligning pre-
diction trajectories, promoting consistency across samples
that share underlying class semantics and temporal evolu-
tion.

Remark 1. In SEQ learning, positive pairs are sequences
from the same class, such as normal videos in anomaly de-
tection or temporally-augmented samples from the same
fine-grained category. The model minimizes alignment
cost between these sequences, learning class-consistent
temporal dynamics without requiring negative sampling.

Crucially, SEQ avoids explicit negative pairs and in-
stead focuses on capturing intra-class temporal consistency.
In fine-grained recognition, it models the subtle trajectory
shifts introduced by smooth temporal augmentations, en-
abling static classifiers to learn temporal structure. In video
anomaly detection, it captures the diverse but coherent nor-
mal behaviors, improving robustness and enabling early
anomaly detection. This class-conditional sequence-level
supervision offers a lightweight yet powerful alternative to
conventional contrastive or recurrent models, especially in
domains where temporal labels are scarce.

Few-shot learning framework. Our training strategy
adopts an episodic structure reminiscent of few-shot learn-
ing, where each episode includes a query sequence and a
support set drawn from the same class. This design encour-
ages the model to generalize from limited supervision by



learning class-specific patterns from few examples.

Remark 2. Unlike standard few-shot learning, SEQ
learning dynamically samples diverse support instances
per episode, forming class prototypes that capture intra-
class variation. In fine-grained image recognition, sup-
port sets are sampled from temporally augmented views of
the same class, fostering rich, class-conditional dynamics.
For video anomaly detection, the model aligns anomalous
query sequences with normal support sets to detect devia-
tions, using the exemplar as a learned prototype of normal
behavior.

This episodic formulation allows the model to build ro-
bust temporal prototypes from few but diverse samples, cru-
cial in scenarios like anomaly detection, where abnormal
events are rare and hard to enumerate (Zhu et al. 2024).
By training to generalize from limited examples and learn-
ing deviations from normality, our approach naturally fits
the few-shot paradigm while using temporal alignment for
stronger inductive bias.

Metric learning framework. At the heart of our ap-
proach lies a differentiable metric, y-soft-DTW (Cuturi and
Blondel 2017), which enables alignment-based comparison
of sequences with varying lengths.

Remark 3. Our SEQ framework uses metric learning to
minimize alignment cost between positive sequence pairs.
In fine-grained recognition, queries are pulled closer to
their class prototypes. In anomaly detection, sequences
with normal behavior are aligned to form consistent, low-
distance pairs.

Unlike traditional DTW, ~y-soft-DTW is fully differ-
entiable, enabling end-to-end optimization. It not only
guides training via smooth gradients but also yields in-
terpretable alignment matrices, revealing well-matched (or
misaligned) temporal segments, useful for both classifica-
tion and anomaly localization.

By embedding sequence alignment within a metric learn-
ing framework, SEQ effectively captures temporal similar-
ity, offering a general and lightweight solution for tasks with
limited labeled data.

D. Proof of Smoothness Preservation

We formally prove that temporal smoothness in the feature
space is preserved when the features are passed through a
single fully connected (FC) layer followed by a Softmax
or Sigmoid activation. This ensures that temporally adja-
cent features yield prediction scores that do not fluctuate
abruptly, which is crucial for tasks such as video anomaly
detection and temporally consistent fine-grained recogni-
tion.

Let Z = |21, 29,...,2,] € R7*? denote a sequence of
d-dimensional feature vectors ordered in time, where 7 is the
temporal length of the sequence. We assume that the feature
sequence is temporally smooth in the /5 norm:

||Z7;+1 721'”2 SE, VZ: 1,...,7’71, (16)

for a small constant € > 0.

Let the classifier be defined as:
¢, =0(Wz;+b), (17)

where W € R¢*? is the weight matrix, b € R is the
bias vector, ¢; € R is the output vector of class scores
(probabilities), and o : R — R is either the Softmax or
Sigmoid activation.

We aim to show that the prediction score sequence ® =
[@1, ..., @] inherits the temporal smoothness of the feature
sequence Z. That is, we want to prove that:

[@i+1 —@illa <6, Vi=1,...,7-1, (18)
for some small § > 0 that depends on € and the classifier
parameters.

To establish this, we proceed with the following steps.

Step 1: linearity of the fully connected layer.

The linear transformation g(z) = Wz + b is Lipschitz
continuous with Lipschitz constant || W ||z, where ||W||2 de-
notes the spectral norm of W':

19(zit1)9(zi) 2= W (zir1—=2i)[2 < ||W||2'||Zi+1—z(il\\sj

Since ||z;+1 — zil|2 < e, it follows that:

l9(zit1) = g(zi)ll2 < [[W]2 - €. (20)

Let us define u; = Wz; +b € RY, s0 ¢; = o(u;). We
now analyze the effect of applying the activation o to the
vector u;.

Step 2: smoothness of the activation function.

Let us consider both Softmax and Sigmoid separately.

Case 1: Sigmoid. The Sigmoid function applied element-
wise is known to be i-Lipschitz. For any two inputs

U, Uit € RC:
1
lo(wiv1) —o(ui)|2 < 1 lwipr —uillz. 21

Combining with the result of Step 1:

1
|piv1 — @ill2 < 1 Wz - e (22)

Case 2: Softmax. The Softmax function is also Lipschitz
continuous under ¢5 norm. It is known that:

||Softmax (w;41)—Softmax (w;)||2 < Lsoftmax || ®i+1—us |2,

(23)
where Lyfmax < 1 and depends on the norm and input scale.
Therefore:

||¢i+1 - ¢i||2 < Loftmax - ||WH2 : €. (24)

Step 3: conclusion.
In both cases, the final inequality takes the form:

[@i+1 — @il < L-e, (25
where L = 1||W/||y for Sigmoid activation, and L =
Lofimax - || W]|2 for Softmax activation.

This proves that the transition from temporally smooth
features to prediction scores via a fully connected classifier
followed by a smooth activation preserves temporal smooth-
ness. That is, the classifier does not introduce abrupt changes
in the predicted scores when the input features change grad-
ually over time. This property is critical for tasks involv-
ing temporal modeling, where consistency across frames or
clips must be maintained.



Figure 7: Examples from Flowers-102, SoyAging, Stanford Dogs, and Cars show how augmentations create temporal variations
from one image. The first column shows originals (green); others apply augmentations by color: flip (red), zoom (blue), rotation
(purple), color jitter (orange), shear (brown), translation (pink), blur (gray), and cutout (cyan), enriching the feature space with
varied appearances.
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Figure 7: (continued) Examples from Flowers-102, SoyAging, Stanford Dogs, and Cars show how augmentations create tem-
poral variations from one image. The first column shows originals (green); others apply augmentations by color: flip (red),
zoom (blue), rotation (purple), color jitter (orange), shear (brown), translation (pink), blur (gray), and cutout (cyan), enriching
the feature space with varied appearances.



Figure 7: (continued) Examples from Flowers-102, SoyAging, Stanford Dogs, and Cars show how augmentations create tem-
poral variations from one image. The first column shows originals (green); others apply augmentations by color: flip (red),
zoom (blue), rotation (purple), color jitter (orange), shear (brown), translation (pink), blur (gray), and cutout (cyan), enriching
the feature space with varied appearances.
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Figure 8: Anomaly prediction comparison. Grey regions indicate ground-truth anomalies. Blue and red curves show the baseline
and our method. Our approach detects anomalies more accurately and earlier, with scores crossing the 0.5 threshold in closer
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Figure 9: Anomaly prediction comparison. In these normal scenarios, our methods correctly avoid false positives, while the
baseline method incorrectly flags them as anomalies.



E. Additional Visualizations

E.1. Additional Smooth Temporal Augmentations Be-
low (Fig. 7), we provide additional visualizations show-
casing our smooth temporal augmentations applied to fine-
grained and ultra-fine-grained image datasets, including
Flowers-102, SoyAging, Stanford Dogs, and Stanford Cars.
Each example starts with the original image (green, first col-
umn), followed by a sequence of augmented variants: hor-
izontal flip (red), zoom (blue), rotation (purple), color jit-
ter (orange), shear (brown), translation (pink), blur (gray),
and cutout (cyan). These augmentations introduce realistic
temporal variations from a single static image, enriching the
feature space with diverse yet semantically consistent ap-
pearances, crucial for modeling temporal dynamics in the
absence of natural video sequences.

E.2. Additional Video Anomaly Detection Visualizations
Below (Fig. 8 and 9), we present additional visualiza-
tions of video anomaly detection results on the MSAD
dataset. These examples demonstrate that our method de-
tects anomalies not only with greater accuracy but also at
earlier time steps compared to competing approaches, high-
lighting its effectiveness in capturing subtle temporal devia-
tions.

F. Additional Discussions

This section provides further explanation of several aspects
of SEQ, including its generalization behaviour, computa-
tional characteristics, temporal augmentation design, and the
role of backbone choices and ablations.

Generalizability. SEQ models temporal structure by
learning class-level temporal distributions rather than mem-
orizing fixed temporal patterns. During training, each
episode samples diverse support sequences whose augmen-
tation parameters evolve smoothly over time. The resulting
exemplars act as barycenters of multiple trajectories, captur-
ing characteristic prediction-space evolution for each class.
This episodic diversity encourages the model to form ro-
bust temporal prototypes that generalize across input varia-
tions. Moreover, the FC+Softmax mapping preserves trajec-
tory smoothness, allowing temporal continuity to be main-
tained throughout the prediction sequence.

Complexity. Although Soft-DTW-based alignment is
used during training, it operates on 7 x 7' matrices of class
probability vectors and thus has moderate computational
cost. In the image domains considered in this work, 7 < 5
and the support sets are small, making alignment efficient
and lightweight. Importantly, SEQ introduces no additional
cost at inference time: the classifier reduces to a single fully
connected layer identical to the static baseline, with no need
for alignment or temporal matching. This preserves the ar-
chitectural simplicity that motivates the framework and dif-
ferentiates it from recurrent or transformer-based temporal
models.

Augmentation. The temporal augmentation strategy is
designed to impose a temporal continuity bias rather than
simulate physically accurate motion. Augmentation param-
eters such as rotation, translation, or color intensity evolve
linearly across virtual timesteps, ensuring that the induced

variation is smooth and coherent. Applying identical aug-
mentation schedules to both support and query sequences
prevents artificial discrepancies and ensures that the learn-
ing signal is governed by feature-level temporal evolution
rather than augmentation artifacts. This provides a con-
trolled setting in which the classifier can learn trajectory
consistency while remaining agnostic to the exact nature of
image-level transformations. Extensions based on genera-
tive temporal augmentations or video test-time adaptation
represent promising avenues for future work.

Backbone fairness. All comparisons within each dataset
use the same frozen backbone for both the baseline and
the temporal variants. This ensures that improvements arise
solely from modeling temporal structure rather than from
differences in representation quality. Different datasets use
different backbones only to match established conventions
in prior work and dataset-specific domain characteristics
(e.g., CLIP-ViT for Cars, ViT-B/16 for Dogs, CLE-ViT
(Swin-B/448, IN-21K) for ultra-fine SoyAging). Experi-
ments using a unified backbone across Cars and Dogs
demonstrate that the relative gains of SEQ remain stable, in-
dicating backbone-invariance of the temporal modeling ben-
efits.

Ablations & statistics. Ablation studies emphasize the
complementary contributions of the different loss compo-
nents. Removing any single loss term leads to a decrease
in accuracy. For example, on the Flowers-102 dataset, we
observe the following results: Baseline 97.5 4 0.5, without
Latign 97.6 £ 0.4, without Lypneom 98.0 & 0.3, without Lcg
96.8 £ 0.6, and the full SEQ objective 98.4 £ 0.3 (p < 0.01
across tasks).

Specifically, removing alignment, smoothness, or seman-
tic supervision consistently degrades performance across
datasets. The complete objective, which integrates tempo-
ral prototype alignment, semantic consistency, and smooth
temporal evolution, produces the most coherent prediction
trajectories and achieves the highest recognition accuracy,
highlighting the importance of combining all components.



